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Genomic selection as a promising tool for discovering genetic variants influencing complex traits, 
along with genotype imputation has an important role in increasing economic efficiency as well as 
genetic gain by accelerating animal breeding programs and potentially improving the accuracy of 
breeding values. The objectives of present research were: (i) to quantify the accuracy of genotype 
imputation and to evaluate factors affecting it, and (ii) to assess the effects of genotype imputation 
and genomic architecture on the performance of the Random Forest (RF), GBLUP and threshold 
Bayes A (TBA) methods for genomic predictions of binary traits. According to disease incidence and 
genomic architecture (heritability (h2) = 0.25 or 0.05, QTL=81 or 810 and linkage disequilibrium 
(LD) = low or high), reference and validation sets were organised in different simulated scenarios 
for the 54K SNP panel. To evaluate imputation accuracy, we randomly masked (90 and 50 percent of 
markers) and subsequently imputed certain genotypes using the FImpute programme. The disease 
incidence slightly affected prediction accuracies. A negative effect of increased missing genotypes 
on accuracies of genomic prediction was observed when applying TBA and GBLUP rather than 
RF. The TBA method performed better than the RF and GBLUP methods for genomic prediction. 
Nonetheless, for a scenario affected by a high number of QTLs and a high level of heritability, RF 
was more precise with an extension of computational time. The results suggested that genotype 
imputation from sparse panels (5.4 K SNPs) with high LD to 50K panels could be a cost-effective 
approach for genomic selection.
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The development of genotyping technologies has facilitated genetic progress 
in breeding programmes by implementing genomic selection (GS). In fact, the 
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accuracy of genomic evaluations has been enhanced via GS and thus has quickly 
spread in livestock breeding. These methodologies are of great value especially for 
the improvement of complex traits such as disease resistance in livestock [Yáñez et al. 
2014, Garrick 2017]. However, the economic aspect of genotyping may be a limiting 
factor for the practical implementation of GS [VanRaden et al. 2011]. 

Genotype imputation method is an alternative in genomic applications to 
detect missing SNPs during the genotyping process through reference population 
information. The merit of imputing genotypes essentially depends on its imputation 
accuracy [Yoshida et al. 2018], which is affected by several factors, such as the 
proportion of missing genotypes [Zhang and Druet 2010, Hickey et al. 2012], the size 
of the training set [Druet et al. 2010], relatedness between the training and testing sets 
[Cleveland and Hickey 2013, Carvalheiro et al. 2014], the level of LD [Hickey et al. 
2012], chromosomal position [Hozé et al. 2013] and minor allele frequency [Badke 
et al. 2014]. There are many investigations reporting that software and methods of 
imputation give reasonable levels of imputation accuracy [Calus et al. 2011, Mulder 
et al. 2012, Sun et al. 2012]. Hence, genotype imputation may supply an appropriate 
alternative to reduce genotyping costs; as a results it has been offered for commercial 
usage [Weigel et al. 2010]. Previous studies [Hayes et al. 2012, Mulder et al. 2012, 
Wang et al. 2013b] showed that genomic prediction accuracy of imputed genotypes is 
comparable to that of original genotypes when imputation accuracy was above 0.95. 
In addition to the factors affecting the accuracy of imputation, genomic prediction 
accuracy depends on factors related to the genetic architecture of population, such as 
marker density, trait heritability [Guo et al. 2014], LD [Yin et al. 2014], the number 
of QTLs and the discrete phenotype ratio allocated to the training set [Naderi et al. 
2016], type  of trait (categorical vs. continuous traits), statistical method [Wang et al. 
2017a] and imputation accuracy [Toghiani et al. 2016].

As a matter of fact, GS focusing on continuous traits has been shown to improve 
the accuracy of GEBVs. Since many prominent traits in livestock, such as resistance 
to disease and degree of calving difficulty, present a binary distribution of phenotypes 
(and are often termed threshold traits), it seems important to consider these traits in 
animal breeding [Wang et al. 2013a]. Hence, GS methods must be adapted to cope with 
challenges of discrete traits. Therefore, threshold versions of Bayesian regressions, 
genomic best linear unbiased prediction (GBLUP) and machine learning methods are 
applied for genomic analyses of these traits [González-Recio and Forni 2011, Naderi 
et al. 2016]. Felipe et al. [2014] evaluated the impact of genotype imputation on the 
predictive ability of complex traits by several models of semi and non-parametric 
models. Their results indicated factors that may affect the applicability of genomic 
prediction accuracy, i.e. the breeding programme design, genetic architecture of the 
trait, the structure of the population, statistical model and accuracy of imputation. 
Chen et al. [2014] evaluated the effect of imputed genotypes on the predictive ability 
of Bayesian regression and GBLUP methods and indicated that imputation errors 
influenced performance of both Bayesian and GBLUP methods.
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In genome studies, simulation allows researchers to discover the effects of the 
genetic architecture of the target trait for evaluating some sources of variability, which 
cannot be distinguished by most real data [Daetwyler et al. 2010]. Therefore, the 
main objective of this study was to explore whether non-parametric methods, such 
as threshold Bayes A, threshold GBLUP and Random Forest for different disease 
incidence rates and population structure, could track genetic signals to provide 
acceptable accuracy of genomic predictions from low-density panels with the need 
of imputing to higher density panels. In this way, the computational aspects are also 
vital factors which have to be considered, because in turn they may affect the general 
performance of each method. 

Material and methods

Population structure

A population of five thousand animals genotyped for 54,000 markers was 
simulated using the QMSim software [Sargolzaei and Schenkel 2009]. In the first 
phase, over a time span of 1,000 generations, a historical population was derived from 
4800 females and 200 males. In the second phase, in order to produce a realistic level 
of LD, a bottleneck was used. For this purpose the population size decreased over 
100 generations to 400 individuals. In the third phase, the population size increased 
over 100 generations and returned to the first phase (4,800 females and 200 males). 
All 5000 individuals of the last historical generation served as founders and using a 
random mating design expanded the recent population by simulating an additional 
10 generations. During these generations, the replacement ratio was set at 0.2 and 
0.50 for females and males, respectively, while selection of candidate individuals 
were based on EBV and age. Each mating produced only one offspring with the same 
probability of being either male or female. Individuals of generations 6 to 9 were used 
as a training set, while the whole generation 10 was considered as the validation set 
(5000 individuals). With regard to heritability (0.05 and 0.025), the number of QTLs 
(either 81 or 810 QTLs) and LD (low and high), 4 different scenarios including I (54K 
SNPs, h2 = 0.25, LD = low and 810 QTLs), II (54K SNPs, h2 = 0.25, LD = low and 
81 QTLs), III (54K SNPs, h2 = 0.05, LD = low and 81 QTLs) and IV (54K SNPs, h2 
= 0.05, LD = high and 81 QTLs) were simulated to reflect variations. All QTLs were 
randomly located along 27 chromosomes 100 cM long from a gamma distribution 
with a shape parameter of 0.4. The mutation rate was fixed at 2.5 × 10-5 for both SNPs 
and QTLs per locus and per generation, as used in previous simulations [Naderi et al. 
2016]. For all scenarios, 10 replicates were simulated to evaluate the models. Table 1 
shows more explanation of parameters as used for the simulations. 

To create a discrete trait, the phenotype of training individuals was coded as 1= sick 
or 0= healthy, and the percentage of sick animals within the training set was considered 
20% (group 1) and 50% (group 2), respectively, whereas phenotypes in the testing set 
were assumed to be unknown. Markers were excluded if they showed extreme departure 
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from the Hardy–Weinberg equilibrium (P<10-5) or minor allele frequency (MAF) was 
under 0.03. To calculate the squared correlation coefficient (r2) between marker pairs in 
the last generation, the PLINK programme [Purcell et al. 2007] was used.

Imputation

To evaluate imputation accuracy, 90 and 50 percent of markers randomly masked 
in 54K SNP platform; afterwards, masked markers were imputed by considering a 
family and population-based algorithm with the FImpute programme [Sargolzaei 
et al. 2011a]. The imputation accuracy was calculated per animal and per SNP by 
the correlation between the imputed and original genotypes for all replications as an 
appropriate approach to minimise dependence on allele frequency.

Genomic prediction

GEBVs and accuracy of genomic prediction were estimated using the threshold 
Bayes A, Random Forest and GBLUP methods for simulated discrete data.  For the 
GBLUP method we used the AI-REML algorithm and implemented the DMU software 
package [Madsen and Jensen 2010], which provides specification of a generalised 
linear mixed model with a logit link function for discrete data. The random individual 
effect was involved by considering genomic relationships between individuals based 
on marker data. According to the method proposed by VanRaden [2008], the genomic 

 Table 1. Parameters of the simulation process 
 

Parameter  Low linkage 
disequilibrium 

High linkage 
disequilibrium 

Historical population    
no. of generations (population size) in phase 1  1,000 (5,000) 1,000 (5,000) 
no. of generations (population size) in phase 2  1,100 (5,000) 1,100 (400) 
no. of generation (population size) in phase 3  1,200 (5,000) 1,200 (5,000) 

Recent population    
no. of founder sires (dams)  200 (4,800) 

10 
1 

random 
0.5 (0.2) 
EBV/age 

0.5 

no. of generations  
no. of offspring per dam  
mating system  
replacement ratio for males (females)  
criteria for selection/culling  
sex probability for offspring  

Genome    
no. of chromosomes  27 

2,700 
evenly spaced 

random (2, 3, or 4) 
gamma (0.4) 

2.5×10−5 
random 

81 or 810 
54000 or 5400 
0.05 or 0.25 

total length of chromosomes (cM)  
marker distribution  
no. of QTL alleles  
effects of QTL alleles  
marker and QTL mutation rate  
position of marker and QTL  
no. of QTL  
no. of markers  
heritability of the trait  
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relationship matrix (G matrix) was constructed and the GEBV software [Sargolzaei et 
al. 2011b] was applied.

For the RF method, we used the java RanFoG package [González-Recio and 
Forni 2011], which may alleviate the problems of analysing genome-wide data using 
feature selection and bootstrapping [Efron and Tibshirani 1993]. The RF prediction 
for an observation, , is computed by averaging predictions over p trees, , 
for which a given observation was not used to build the tree and  characterises the pth 
RF tree in terms of split variables, cut points at each node, and terminal node values. 
The RF framework was used in the following model:

Genomic prediction accuracy of discrete traits with imputation of missing genotypes

An optimum combination was found when RF parameters such as ntree (the number 
of trees to grow), mtry (the number of SNPs randomly selected at each tree node) and 
nodesize (the minimum size of terminal nodes of trees) were pre-determined and tuned. 
Animals not included in the bootstrapped sample were defined as “out of bag”, being 
the validation set for each tree. Therefore, the out of bag error is a basic factor in RF and 
determines the best output RF by an optimum combination of RF parameters. In this 
study, RF was used on mean almost two-thirds of the data and a random subset p of the 
m SNP (p ~2/3 × m) for the construction of each tree (mtry). At each node, data were 
split in 2 branches based on the genotype at SNPj by minimising a loss function for 
classification (nodesize). In the current study, 5,000 trees (ntree) were constructed for 
54K SNP chips in original and imputed data. Random sampling of the data contributed 
to the formation of de-correlated trees. Each tree reflected the most frequent outcome 
for a given combination of marker genotypes. The average of the predicted value for 
each tree was the probability of being susceptible to the disease.  

For threshold Bayes A (TBA), the BGLR package [De Los Campos et al. 2009] 
of R software was used. TBA assumes that each marker has a different variance, but 
each has an effect. The TBA can be described as follows:

                                         λ=µ1+Xb+e
where: the underlying liability variable vector for y is λ, μ is the population mean, 

column vector (n×1) of ones is 1; b indicate [bj] the vector for the regression coefficient 
estimates of the p markers assumed to be normally and independently distributed a 
priori as N (0, σj

2), which σj
2 is an unknown variance related with SNP j. The scaled 

inverse chi square σj
2~ υjs

2
jχ

-1
υj with υj = 4 and s2

j = 0.002 is assumed for the prior 
distribution of σj

2. Elements of the incidence matrix X, of order n ×p, was set for the 
additive model. The residuals (e) are assumed to be distributed as N (µ=0, σe

2=1), as 
stated above [González-Recio and Forni 2011].

Generally, the accuracy of genomic prediction was calculated by the phi-
correlation coefficient between TBV and EBV for each model and simulated a scenario 
in the validation set. The following model was used to the phi-correlation coefficient 
[González-Recio and Forni 2011]:
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All operation steps of the current study are shown in Figure 1.

Fig.1. Overview of individual steps of research process

      Computational time

We ran all the models using a computer with 32 gigabytes RAM and Core i7 
– CPU 3.6 GHz. For each of the scenarios, computational time and the amount of 
required memory were recorded to compare the methods.

Results and discussion 

Results indicated high imputation accuracies under different scenarios from 
different low-density panels (5.4 K and 27 K) to the 54 k SNP panel (Tab. 2). The 
average of imputation accuracy for the scenario with 50% of the genotypes masked 
(27K) was higher than for the scenario with 90% of the genotypes masked (5.4 K 
SNPs). We observed that the accuracy of imputation improved with increasing LD. 
The beneficial effect of LD on increasing imputation accuracy was greater when the 
sparse panels (5.4 K SNPs) were used. 
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In animal breeding programmes the rate of genetic gain has been improved 
by genomic selection. In this regard, imputation using low density panels to high 
density panels and also genotyping of more individuals facilitated a reduction of the 
genotyping costs in the breeding practice. In recent years, some investigations have 
reported the predictive ability of models using subsets of SNPs, with and without 
imputation [Daetwyler et al. 2011, Mulder et al. 2012, Felipe et al. 2014, Chen et al. 
2014]. In most cases, predictive ability improved with imputed genotypes, thus many 
researchers recommend the imputation strategy to reduce costs in genomic selection 
programmes. However, some studies reported that this strategy was not always useful 
for genomic selection programmes [Felipe et al. 2014], which in turn depends on 
different factors and will be considered in our study.  

The results obtained showed that LD between SNPs in the original and low density 
panels helped to increase the accuracy of imputation. Also, similarity of LD patterns 
between the training panel and the set to be imputed serves as a basis for imputing the 
missing genotypes. In this study, the factors affecting imputation accuracy (the number 
of markers available than the original panel and LD among markers) are comparable 
to the reports published on maize [Hickey et al. 2012], Australian Holstein-Friesian 
cattle [Khatkar et al. 2012], Dutch Holstein cattle [Mulder et al. 2012], Fleckvieh and 
Holstein cattle [Pausch et al. 2013, Pausch et al. 2017], Yorkshire boars [Badke et 
al. 2014], a simulated population of Brazilian Nellore cattle [Boison et al. 2014] and 
Japanese Black cattle [Ogawa et al. 2016]. Generally, because of low linkage and LD 
among markers in low density panels and increasing imputation errors, the accuracy 
of imputation was reduced with a decrease of marker density (or an increase in the 
ratio of missing genotypes).

Accuracy of genomic predictions
Impact of disease incidence in training sets on accuracy of genomic prediction.
Accuracies of estimated GEBVs for different scenarios and marker densities 

are shown in Tables 3 and 4, with 20 and 50 percent of animals in the training set 
being sick, respectively. The distribution of sick individuals into the training sets 

Genomic prediction accuracy of discrete traits with imputation of missing genotypes

 Table 2. Accuracy of imputation and standard deviation for 90 and 50 
percentage of masked genotypes for all scenarios 8,5 

 

Scenarios 

 90% of masked 
genotypes  50% of masked 

genotypes 
 imputation 

accuracy SD  imputation 
accuracy SD 

I  0.958 0.018  0.972 0.013 
II  0.959 0.019  0.974 0.014 
III  0.958 0.018  0.974 0.012 
IV  0.97 0.013  0.986 0.01 

 
I (54K SNP, h2 = 0.25, LD = low and 810 QTL), II (54K SNP, h2 = 0.25, 
LD = low and 81 QTL), III (54K SNP, h2 = 0.05, LD = low and 81 QTL) 
and IV (54K SNP, h2 = 0.05, LD = high and 81 QTL). 
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slightly affected accuracy of genomic predictions in all models considered. When 
the number of sick individuals decreased from 50% to 20%, prediction accuracy 
increased correspondingly. For both groups, the average of prediction accuracies from 
TBA always outperformed those from corresponding GBLUP and RF applications. 
Nonetheless, standard errors for RF across the 10 replicates were more homogeneous 
in comparison with TBA and GBLUP applications. The highest accuracy (0.608) was 
observed in scenario II when 20 percent of animals in the training set were sick. With 
regard to scenario I, RF performed better than TBA and GBLUP for both groups. 
For III and IV and in comparison to RF, TBA and GBLUP showed higher accuracies 
of genomic prediction and differentiated more accurately between both groups for 
original and imputed genotypes. 

González-Recio and Forni [2011] simulated a genomic population considering a 
discrete trait, by including 2500 animals to establish a training set to investigate accuracy 
of genomic prediction via machine-learning and Bayesian regressions methods. Their 
results showed accuracy of 0.36 and 0.26 using RF and TBA, respectively. Ogutu 
et al. [2011] applied RR-BLUP and RF methodologies to a calibration set of 2,326 
individuals genotyped by 10K SNPs. They reported a better predictive ability in RR-
BLUP (0.6) rather than RF (0.48). Naderi et al. [2016] simulated different genomic 
architectures and selected different proportions of animals to establish a training set 
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 Table 3. The accuracies of estimated GEBVs using the original and imputed SNP genotypes 
from genomic BLUP (GBLUP) random forest (RF), threshold Bayes A (TBA) 
applications when 20 percentage of animals in the training set are sick (the values in 
parentheses show the SD from 10 replicates) 

 

Model  Imputation 
ratio 

 Scenarios  Average   I II III IV  

GBLUP 

 90%  0.508 
(0.05) 

0.475 
(0.06) 

0.34 
(0.06) 

0.448 
(0.05) 

 0.443 
(0.05) 

 50%  0.52 
(0.05) 

0.498 
(0.05) 

0.366 
(0.05) 

0.454 
(0.05) 

 0.460 
(0.04) 

 Original  0.544 
(0.04) 

0.524 
(0.05) 

0.397 
(0.04) 

0.466 
(0.04) 

 0.483 
(0.03) 

RF 

 90%  0.567 
(0.03) 

0.45 
(0.04) 

0.319 
(0.03) 

0.429 
(0.04) 

 0.441 
(0.03) 

 50%  0.578 
(0.03) 

0.469 
(0.04) 

0.341 
(0.03) 

0.436 
(0.03) 

 0.456 
(0.03) 

 Original  0.592 
(0.02) 

0.493 
(0.03) 

0.369 
(0.02) 

0.446 
(0.02) 

 0.475 
(0.02) 

TBA 

 90%  0.517 
(0.06) 

0.565 
(0.05) 

0.391 
(0.06) 

0.465 
(0.05) 

 0.485 
(0.05) 

 50%  0.544 
(0.05) 

0.579 
(0.04) 

0.406 
(0.05) 

0.474 
(0.04) 

 0.501 
(0.04) 

 Original  0.580 
(0.04) 

0.608 
(0.04) 

0.453 
(0.04) 

0.491 
(0.03) 

 0.533 
(0.03) 

 
I (54K SNP, h2 = 0.25, LD = low and 810 QTL), II (54K SNP, h2 = 0.25, LD = low and 81 
QTL), III (54K SNP, h2 = 0.05, LD = low and 81 QTL) and IV (54K SNP, h2 = 0.05, LD = 
high and 81 QTL). 
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to evaluate efficiency of GBLUP and RF algorithms for a binary trait. In contrast 
with our results, they reported that genomic prediction accuracy of the GBLUP model 
increased from 0.23 to 0.36 for a low LD scenario due to an increase in the percentage 
of sick individuals in the training set from 2.5 to 25 percent, while for RF it increased 
from 0.13 to 0.30 until the 20% allocation scheme, and then, in agreement with our 
results, it decreased to a negligiblr 0.27 from the 25% allocation scheme. When 20 
percent of animals in the training set were sick, prediction accuracies reported by 
Naderi et al. [2016] were consistently lower for both the RF (0.30-0.53) and GBLUP 
(0.32-0.50) methods than the present research results, i.e.  0.369- 0.592 for RF, 0.397-
0.544 for GBLUP and 0.453-0.608 for TBA. 

 In the current study, a reduction in the number of sick individuals in the training 
set was associated with an increase in the accuracy of genomic prediction in all three 
models and was in agreement with the results recorded by Naderi et al. [2018] for 
disease traits in Holstein Friesian cows. In brief, they specified that a correlation 
between pre-corrected phenotypes and genomic breeding values (rGBV) increased by 
the decrease in the percentage of sick cows in the training set from 37 to 20 percent for 
claw disorders, from 32 to 25 percent for clinical mastitis and from 29 to 19 percent 
for female infertility. One possible explanation for different reactions of various 
traits to the decreased percentage of sick individuals in training sets addresses the 
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 Table 4. The accuracies of estimated GEBVs using the original and imputed SNP genotypes 
from genomic BLUP (GBLUP) random forest (RF), threshold Bayes A (TBA) 
applications when 50 percentage of animals in the training set are sick (the values in 
parentheses show the SD from 10 replicates) 

 

Model  Imputation 
ratio 

 Scenarios  Average   I II III IV  

GBLUP 

 90%  0.506 
(0.06) 

0.472 
(0.05) 

0.321 
(0.06) 

0.423 
(0.05) 

 0.431 
(0.05) 

 50%  0.517 
(0.05) 

0.486 
(0.05) 

0.345 
(0.05) 

0.436 
(0.05) 

 0.446 
(0.05) 

 Original  0.541 
(0.04) 

0.516 
(0.05) 

0.376 
(0.04) 

0.447 
(0.05) 

 0.47 
(0.04) 

RF 

 90%  0.531 
(0.03) 

0.41 
(0.04) 

0.275 
(0.03) 

0.396 
(0.03) 

 0.403 
(0.03) 

 50%  0.54 
(0.03) 

0.424 
(0.03) 

0.3 
(0.03) 

0.404 
(0.03) 

 0.417 
(0.03) 

 Original  0.556 
(0.02) 

0.453 
(0.03) 

0.329 
(0.02) 

0.416 
(0.02) 

 0.4385 
(0.02) 

TBA 

 90%  0.491 
(0.06) 

0.556 
(0.06) 

0.372 
(0.05) 

0.455 
(0.05) 

 0.469 
(0.05) 

 50%  0.51 
(0.05) 

0.572 
(0.05) 

0.389 
(0.04) 

0.462 
(0.05) 

 0.483 
(0.04) 

 Original  0.549 
(0.05) 

0.608 
(0.04) 

0.429 
(0.04) 

0.485 
(0.04) 

 0.518 
(0.04) 

 
I (54K SNP, h2 = 0.25, LD = low and 810 QTL), II (54K SNP, h2 = 0.25, LD = low and 81 
QTL), III (54K SNP, h2 = 0.05, LD = low and 81 QTL) and IV (54K SNP, h2 = 0.05, LD = 
high and 81 QTL). 
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different distributions of response variables. Generally, for binary traits as response 
variables the optimal individuals in the training sets had disease incidences that were 
close to the rates in the whole population. In this study, the phenotype of the animals 
was coded as 0 or 1 depending on whether their simulated phenotype was above 
or below the average population (the 50% allocation scheme) or above or below 20 
percent of population phenotypes (the 20% allocation scheme), respectively. Because 
of the normal distribution for the simulated phenotypes, the phenotype mode tends 
to fluctuate around the average axis, so more individuals are in the vicinity of the 
average population for the 50% allocation scheme than the 0.2 axis for the 20% 
allocation scheme. This distribution leads to a situation when more individuals are 
coded without considering their merit and only using their phenotypes, which in 
turn generates more classification errors for binary phenotypes of the 50% allocation 
scheme than the 20% allocation scheme. In conclusion, the prediction accuracy is 
unintentionally decreased.

Impact of missing genotypes on accuracy of genomic predictions. 
The effect of missing genotypes on the genomic prediction accuracy depends on 

methods and the missing rate (Fig. 2). Furthermore, performances of RF, GBLUP and 
TBA methods were affected by missing genotypes. Comparing to original genotypes, 
accuracy of genomic prediction dropped rapidly when the 90% missing rate panel was 
used. The genomic prediction accuracies for imputed genotypes were comparable to 
the original genotypes within each method and scenario. Generally, the imputation 
error leads to a reduction in imputation accuracy and subsequently decreasing 
imputation accuracy results in a reduced accuracy of genomic prediction. Results 
from the present study showed the negative effect of increased missing genotypes 

Y. Naderi et al. 

Fig. 2. Effect of missing genotype proportion on reduction of genomic prediction accuracy compared to 
the original panel for threshold Bayes A (TBA), GBLUP (GBL) and Random Forest (RF) methods when 
20 (left) and 50 (right) percent of animals in the training set were sick.
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on accuracies of genomic prediction when applying TBA and GBLUP rather than 
RF. Due to the negligibility of the imputation error, the noise added by imputation 
was lower for scenario IV (high imputation accuracy) than the other scenarios. As a 
result, with increasing imputation accuracy, differences between original and imputed 
genotypes (90%) in accuracies of genomic prediction reached the minimum.

One of the purposes of this study was to investigate whether imputation from 
a low-density to a higher density panels could be helpful for predictive ability of 
threshold methods. Overall, slight differences were seen among accuracies of 
genomic prediction via GBLUP, TBA and RF when original and imputed genotypes 
were compared. The results obtained from current research showed that the average 
accuracy of imputation was acceptable (0.961) when the sparse panels were used; 
therefore, it seems that the application of the 5.4 K SNP panel could be a good 
choice for genomic selection programs. This indicates that imputation yields extra 
information to the model and hence no increase in marker density is necessary to 
improve accuracy of genomic prediction. It is obvious that (i) imputation accuracy 
has a large influence on the accuracy of GEBVs [Wang et al. 2016], (ii) Mulder et 
al. [2012] after using a deterministic equation concluded that accuracy of GEBV 
increased linearly with an increase in imputation accuracy. Toghiani et al. [2016] 
and Weigel et al. [2010] investigated the accuracy of direct genomic values from the 
imputed SNP panels to original panels via Bayesian methods. They concluded that in 
scenarios where imputation accuracy was high, imputation could improve accuracy 
of genomic prediction. In the same context, researches [Mulder et al. 2012, Felipe et 
al. 2014] showed that where imputation error was high, as a result damage caused 
by imputation may be greater than its benefit in genomic selection programmes. 
Generally, studies showed that accuracy of genomic prediction is acceptable when 
accuracy of imputation is higher than 0.88 [Badke et al. 2014]. Felipe et al. [2014] 
investigated the accuracy of genomic prediction for true and imputed genotypes (with 
90, 75 and 50% missing rates) in a mouse population using linear and semi and non-
parametric models. They reported that genotype imputation had the same effect on the 
performance of the Bayesian LASSO model, while Bayesian Regularized Artificial 
Neural Network accuracies were more sensitive to the imputation error. The accuracy 
of genomic prediction obtained from imputed genotypes was significantly decreased 
compared to that from true data; nonetheless, it seemed that imputation is beneficial 
when relatedness between training and validation sets was poorer [Felipe et al. 2014].

Impact of genomic architecture on accuracy of genomic predictions
Impact of number of QTLs. For the original and imputed genotypes, the accuracy 

of genomic prediction from GBLUP, RF and TBA applications for scenarios I (810 
QTLs) and II (81 QTLs), both considering a trait with a y 0.25heritabilit, are shown in 
Tables 3 and 4. For both groups, in contrast with TBA, with an increase in the number 
of QTLs accuracies of GEBV were partially higher for RF in original and imputed 
genotypes (Fig. 3). A reduction of genomic prediction accuracy due to a change of 
QTL number was generally greater when a higher number of genotypes was missed.

Genomic prediction accuracy of discrete traits with imputation of missing genotypes
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In the current study the highest accuracy was obtained for RF. An increase in 
the number of QTLs generally led to a major improvement in RF accuracies, 
while negligible positive and negative effects were found for GBLUP and TBA, 
respectively. In the present study, effects of QTL alleles were simulated with a gamma 
distribution. Gamma distribution of QTL effects would cause a minor proportion of 
them showing large effects, which may not be a desirable hypothesis for GBLUP 
compared to the BTA method. GBLUP was less sensitive to an increase in the number 
of QTLs (relatively stable results for both QTL scenarios in Fig. 4). For TBA, when 
the number of QTLs decreased, the total genetic variance was divided among fewer 
QTLs; therefore, the performance of methods increased to estimate such large QTL 
effects. In addition, RF was more sensitive to an increase in the number of QTLs 
compared with GBLUP, which in turn may be explained as follows: GBLUP assumed 
the same variance for each independent chromosome segment regardless of the 
effect of the segment, while RF was based on a sampling technique for predictors 
(SNPs). Hence, by using 50K panels combined with a large number of QTLs, SNPs 
in close distance to QTLs were sufficiently frequently sampled. Nevertheless, most 
of the important breeding traits are affected by many genes with small effects, and 
this supports the assumptions made for GBLUP applications [Hayes et al. 2009]. 
In scenario I, the highest accuracy of genomic prediction was recorded for TBA; it 
seems that several large QTLs are responsible for this phenomenon [Hayes et al. 
2009]. At a constant heritability (h2=0.3) and high-density SNP platforms, GBLUP 
was insensitive to genetic architecture (i.e. the number of QTLs), while the genomic 
prediction accuracy of the RF method improved as the number of QTLs increased 
[Naderi et al. 2016]. High accuracies of genomic prediction could be obtained when 
the number of QTLs decreased via Bayesian regressions methods, while accuracy of 

Fig. 3. The effect of decreasing the number of QTLs on a reduction of genomic prediction accuracy using 
threshold Bayes A (TBA), GBLUP (GBL) and Random Forest (RF) methods when 20 (left) and 50 (right) 
percent of animals in the training set were sick.
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partial least square regression was unaffected [Coster et al. 2010]. Furthermore, in a 
later study the RF algorithm reached a higher accuracy (0.36) for smaller number of 
QTLs, while TBA methods showed a better predictive ability when a high number of 
QTLs was used [González-Recio and Forni 2011]. Generally, a different number of 
simulated chromosomes [Daetwyler et al. 2010], effective population sizes [Andonov 
et al. 2017], trait architecture [Ghafouri-Kesbi et al. 2017] and the additive nature of 
the simulated scenarios were in contrast to real data, with a more complex interaction 
between genes and biological pathways being a poential reason for inconsistency of 
earlier findings with our results. 

Impact of heritability. The effect of heritability (h2=0.25 and h2=0.05) on accuracies 
of genomic prediction is depicted in Tables 3 and 4 (comparison of scenarios II and 
III). With an increase of heritability, the accuracy of genomic prediction considerably 
improved for all the methods applied for original and imputed genotypes in both 
groups. Because of decreasing heritability, the reduction of genomic prediction 
accuracy was rapid with an increase in the proportion of missing genotypes, which in 
turn was more pronounced for TBA rather than for GBLUP and RF (Fig. 4). 

Resende et al. [2012] applied different Bayesian methods and RR–BLUP to a 
Pinus Taeda (loblolly pine) training population of 951 individuals genotyped with 5K 
SNPs. For all the methods the ability to predict phenotypes was linearly correlated 
with trait heritability. Our results are in accordance with the theory proposed by Bo 
et al. [2017] concerning the direct relationship between heritability and accuracy of 
genomic prediction. Furthermore, Neves et al. [2012] compared different methods 
(Kernel regression, LASSO, Random Forest, Ridge regression) in the evaluation of 
a mouse population with a wide range of heritability on the accuracy of genomic 

Fig. 4. The effect of decreasing heritability on the reduction of genomic prediction accuracy using 
threshold Bayes A (TBA), GBLUP (GBL) and Random Forest (RF) methods when 20 (left) and 50 (right) 
percent of animals in the training set were sick.
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prediction and found no significant differences between these methods. Wang et al. 
[2017a] investigated the effect of different heritabilities on the accuracies of genomic 
prediction using Bayesian methods in threshold traits. They reported that the accuracy 
of genomic prediction using threshold Bayes Cπ increased when heritability of the 
target trait increased. In many previous studies [Atefi et al. 2016], profitable effects of 
increasing heritability on the accuracy of genomic prediction via the Bayesian model 
were confirmed. These positive effects may be a result of higher genetic variations and 
contribute to accurate predictions of marker effects. Generally, high heritability means 
a strong role of the genes with additive expression to create variation in a trait, which, 
in turn, leads to a more accurate estimation of SNP effects. Regardless of the high 
heritability of the target trait, in that case the phenotype of the individuals is close to 
their genotype values; as a result, the effects of SNPs and thus alos genomic breeding 
values of individuals will be more precisely predicted [Goddard and Hayes 2009, 
Villumsen et al. 2009].   

Impact of LD structure. We presented the pattern of different LD structures [i.e. 
scenario III (with average LD=0.233 at distances of 0.05 cM) vs. IV (with average 
LD=0.431 at distances of 0.05 cM)] on the accuracy of genomic prediction according 
to RF, TBA and GBLUP in imputed and original genotypes (Tab. 4 and Fig. 5). 
Generally, there was a decrease in prediction accuracies for all the methods with 
decreasing LD levels. Nonetheless, the accuracy of genomic prediction was rapidly 
reduced when the RF method was used.

Fig. 5. The effect of a decrease in LD level on the reduction of genomic prediction accuracy using threshold 
Bayes A (TBA), GBLUP (GBL) and Random Forest (RF) methods when 20 (left) and 50 (right) percent of 
animals in the training set were sick.

Y. Naderi et al. 

The increase of LD can positively affect the accuracy of genomic prediction in two 
ways, including the effect on imputation accuracy and model estimation. In the case of 
only a weak genetic relationship between the reference and validation sets, LD is an 
important factor. Not only does a high LD mean a lower marker density requirement 
to cover the genome, but also a higher collinearity among linked markers [Liu et al. 
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2015]. In this study, LD had a different effect on the performance of RF, GBLUP and 
TBA accuracies, with imputed genotypes (especially 90% missing genotypes) being 
more sensitive than original data.  Generally, RF was more sensitive than GBLUP 
and TBA to LD variations. Studies concerning the human genome showed that the 
existence of strong LD between neighbouring SNPs has a basic effect on the detection 
of disease-causing variants [Ke et al. 2004].

Theoretically, the extent of LD is related to the effective population size (Ne) 
[Wang et al. 2017b]. It is generally accepted that LD between markers and QTLs is a 
main source of information, which contributes to the accuracy of genomic prediction 
[Sun et al. 2016]. Jónás et al. [2017] reported that using LD information alongside 
with the genome to build haplotypes specifically for genomic prediction is a preferable 
step to increase the genomic prediction accuracy. However, Wientjes et al. [2013] 
indicated that LD has a small effect on predictive ability. Accuracies of the estimated 
genomic breeding value showed an increase alongside with the enlargement of LD 
size, especially for RF, which is in agreement with the simulated study by [Naderi et 
al. 2016]. Accuracy of the Bayes A was improved with an increase in LD of a historical 
population in the half-sib families [Sun et al. 2016]. A higher level of LD between 
QTLs and markers showed that more markers  capture a higher proportion of the 
genetic variance [Goddard 2009], and are a prerequisite for an efficient performance 
of RF [Naderi et al. 2016].

Computational time

From the computational perspective, a wide variation was observed for the applied 
methods. Regarding computational time,  GBLUP ranked first with 9 h per replicate, 
followed by TBA and RF with 12 and 24 h per replicate, respectively. Also concerning 
memory requirement, TBA, RF and GBLUP ranked from the highest to lowest with 
8.3, 6.5 and 5.7 gigabytes, respectively. 

In addition to the importance of models in achieving high accuracy, the 
computational aspects in this situation constitute new challenges from breeding and 
statistical viewpoints. For instance, Heslot et al. [2012] pointed out that BayesCpi 
should not be recommended for application in genomic selection despite the high 
accuracy in some traits, because it has a much greater computational cost compared to 
RR_GBLUP. They reported that the optimal method for genomic selection should be 
reliable as well as computationally efficient, while obviously being the most possibly 
accurate. In recent years, computing requirements have become more important than 
ever due to an increase in dimensionality of genomic selection programmes concerning 
the density of SNP chips and the number of genotyped individuals [Ober et al. 2012]. 
However, at continuous updating of computational systems its importance seems to 
be diminishing. In all the researches we studied [Neves et al. 2012; Ghafouri-Kesbi et 
al. 2017; Naderi et al. 2016], GBLUP was one of the most efficient methods regarding 
computational time, thus confirming our results. For example, Ghafouri-Kesbi et al. 
[2017] reported that computational time was reduced for GBLUP (10 min) compared 
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with RF (75 min). In the current study, computational time was the most considerable 
problematic issue of the RF. It is because when using machine learning models all the 
base learners in the ensemble have to be evaluated to obtain genomic predictions. This 
in turn is time-consuming, especially when the ensemble is noticeably large [Natekin 
and Knoll et al. 2013]. Therefore, a higher prediction accuracy of RF in scenario I was 
associated with the cost related with a longer computational time, which in turn may 
be a serious limitation when using RF methodology.

Conclusions

Genotype imputation can be reasonably applied to estimate the predictive ability 
of threshold methods, especially when sparse panels with high LD were used. The 
distribution of sick individuals into training sets slightly affected the predictive ability 
of RF, GBLUP and TBA. However, the accuracy of genomic prediction was greater 
when 20 percent of animals in the training set were sick. The structure of genomic 
architecture and accuracy of imputation were the most important factors when analysing 
discrete traits affecting accuracy of genomic prediction. For a scenario affected by a high 
number of QTLs and a high level of heritability, RF was more precise than the GBLUP 
and TBA methods. However, the cost of a longer computational time was a serious 
limitation when using RF methodology. Generally, genomic prediction accuracy of 
theTBA method was higher than those of the RF and GBLUP methods under different 
densities of the SNP panel. However, it seems that the use of imputed genotypes should 
be carefully evaluated, since the negative effect of increased imputation errors on the 
accuracies of genomic prediction in TBA was high. 
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