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There is a growing body of literature that recognizes the importance of understanding the adaptation 
of the cattle populations to the climate conditions. Among others heat stress is one of the causes of 
reduction in feed intake, decreased milk yields, shortened lactation and reduced fertility. Genomic 
prediction of the phenotype is one of the most frequently stated problem in connection with genome 
wide association studies (GWAS) and genomic selection. Investigation on genomic prediction of 
hairy syndrome in cattle is important for our increased understanding of adaptive evolutions due to 
the climate change. This research examines the emerging role in the context of genomic prediction of 
hairy and slick condition of the cattle  using both Bayesian learning (BL) (Bayesian ridge regression, 
Bayesian LASSO, Bayes A, Bayes B and Bayes C and machine learning (ML) methods (weighted 
subspace random forest (wRF), gradient boosted trees (GBT), naïve Bayes (NB) and K-nearest 
neighbors (KNN) under various experimental designs. The dataset included 99 (37 cases and 62 
controls: defined by visual inspection of hairiness) crossbred cows genotyped for 712 222 SNPs. 
This study set out with the aim of assessing the importance of linkage disequilibrium, population 
structure, and various SNPs selection process (for only ML) for genomic prediction of hairiness 
using BL and ML models.  The most obvious finding to emerge from this study is the superiority of 
ML model over BL models for genomic prediction of the phenotype. This study supports evidence 
from previous observations on beneficial usage of ML model in genetics and genomics research. 
The relevance of wRF is clearly supported by the current findings. The wRF with GWAS selected 
SNPs of 15000 gave the best prediction accuracy (with standard error in parenthesis,  Area Under 
Curve=0.998 (0.004)). Despite its relatively small sampling size: these data suggest that ML 
prediction of hairiness can be achieved through high prediction accuracies hence the finding of this 
study have a number of important dairy cattle breeding implications for future practice in response 
to the climate change problem. 
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The issue of climate change has received considerable critical attention for 
negative impacts on cattle production [Nguyen et al. 2017]. There is a growing body 
of literature that recognizes the importance of understanding the adaptation of the 
cattle populations to the climate conditions [Berry 2018, Freitas et al. 2021]. Among 
others heat stress is one of the cause of reduction in feed intake, decreased milk yields, 
shortened lactation and reduced fertility [Nguyen et al. 2017]. Evidence suggests 
that adaptive evolutions (as such coat conformation) is among the most important 
factors for heat tolerance [Cai et al. 2021].There is evidence that a single mutation 
in prolactin (PRL) plays a crucial role in regulating hair length and coat structure in 
Senepol breed cows [Littlejohn et al. 2014] in connection with better heat tolerance 
and higher milk yield production. A study on Holstein population with slick hair 
condition by Dikmen et al. [2014] reports higher milk yield productions. Classical 
breeding/selection applications for introducing PRL mutations to artificially selected 
populations can play an important role in addressing the issue of the climate change.

However due to longer generation interval of cattle: classical breeding applications 
might be limited compared with recent molecular breeding applications. Genetic 
improvement experienced by genomic selection [Meuwissen et al. 2001] over the past 
decade remain unprecedented [Garner et al. 2016]. Genomic selection is important 
for a wide range of scientific and industrial applications in dairy cattle [Wiggans et 
al. 2017] due to longer generation intervals of cattle compared with most of the other 
farm species.

Genomic prediction of the phenotype is one of the most frequently stated problem 
in connection with genome wide association studies (GWAS) and genomic selection 
[Baker et al. 2020, Grinberg et al. 2020]. Investigation on genomic prediction of 
hairy syndrome in cattle is important for our increased understanding of adaptive 
evolutions due to the climate change. Several methods currently exist for the genomic 
prediction of the phenotypes [Abdollahi-Arpanahi et al. 2020]. The choice of the 
genomic prediction model could be assessed by level of linkage disequilibrium, effect 
of major genes, marker density, nonlinear interactions of the genes in the population 
[Baker et al. 2020]. The Bayesian regression models [Gianola 2013 Meuwissen et 
al. 2001] has a number of attractive features including: capable of marker specific 
prior distributions [Baker et al. 2020] and incorporation of linkage disequilibrium 
[Moser et al. 2015] for the genomic prediction. Recent advances in machine learning 
(ML) methods have facilitated investigation of genome wide associations data with 
binary phenotypes for genomic prediction and classification problems. However, 
there is a relatively small body of literature that uses ML algorithms for prediction 
of phenotypes using molecular genetic markers. It has been suggested that [Grinberg 
et al. 2020] ML methods for genomic prediction are independent of genetic model 
assumptions (additive gene effects, the number of genes and their interactions). One 
of the most significant current discussions in assumptions of ML is the effect of 
population stratification [Grinberg et al. 2020]. 
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 Baker et al. [ 2020] studied the prediction of disease statues in dogs using various 
ML  and Bayesian Learning (BL) or genomic prediction/selection models. A significant 
genomic selection analysis and the discussion on the heat tolerance in dairy cattle 
was presented by [Carabano et al. 2019, Garner et al. 2016]. This research examines 
the emerging role in the context of genomic prediction of hairy and slick condition 
of the cattle [Littlejohn et al. 2014] using both BL and ML methods under various 
experimental designs including linkage disequilibrium (LD), population stratification 
(PS) and combinations of LD and PS.  

Material and methods

Dataset and Quality Control

A two generation of pedigree was used for sampling the animals. The pedigree 
consisted 2274 animals with 2 affected sires families. The dataset included 99 (37 cases 
and 62 controls: defined by visual inspection of hairiness) crossbred cows of mixture 
of Senepol, Barzona, Red Angus, and Hereford ancestry genotyped for 712.222 
SNPs [Littlejohn et al. 2014]. We applied different data selection and quality control 
procedures based on minor allele frequencies (<0.95), calling rate of SNPs (>0.90), 
Hardy-Weinberg equilibrium (P<1E-07), Linkage Disequilibrium (LD) (r2>0.7) 
and genomic relations (inbreeding coefficient>0.09). Genomic relationship matrix 
and associated inbreeding coefficients were obtained by using genomic relationship 
matrix [VanRaden 2008] implemented in PLINK [Purcell et al. 2007]. Different 
methods have been proposed [VanRaden 2008] to obtain genomic relationship matrix 
in connection with genetic relationship among animals. We used 

Genomic prediction of hairy syndrome

equation: where Z is a design matrix equating mean values of the alles to 0 and

There are three main types of study design used to evaluate ML and BL 
methods: based on LD, population stratification (PS) and combination of LD and 
PS. Quantification of LD is one of the most common procedures for determining 
correlated SNPs over genome. Different authors measured the level of LD to obtain 
decorrelated version of the genotypic data in a variety of ways [Calus and Vandenplas 
2018]. Previous studies have based their criteria for square of correlations (for example 
r2>0.7) among SNPs [Baker et al. 2020, Calus and Vandenplas 2018, Grinberg et al. 
2020] to obtain LD pruned data [Purcell et al. 2007]. A number of techniques have 
been developed the address PS based on genomic relationship matrix [Zhang et al. 
2015]. The animals were selected on the bases of the degree of relatedness of their 
genomic kinship [Purcell et al. 2007]. 

is a scaling factor with second allele frequency of pj.
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Splitting the data as training (%80 of animals) and testing (%20 of animals) are 
currently the most popular methods for assessing model performance in ML and 
BL methods [Baker et al. 2020, Grinberg et al. 2020]. Area under the curve (AUC) 
approach was used to capture the accuracies over training and testing procedures by 
using 10 fold cross validations of ML and BL methods as was defined in [Baker et 
al. 2020]. All analyses were done with the statistical software R [2020] based on 
associated R code of Baker et al. [2020].

Bayesian Learning Models

BL and ML analyses was based on the conceptual framework proposed by [Baker 
et al. 2020]. BL were obtained for Bayesian ridge regression, Bayesian LASSO, 
Bayes A, Bayes B and Bayes C [Gianola 2013] using the BGLR package [Perez and 
de los Campos 2014] with 52000 Markov Chain Monte Carlo iterations by 6000 burn-
in period. 
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in which yi is the binary phenotypes of the ith animal; zij is an indicator variable 
(depends on BL model) for the ith animal, jth SNP locus and kth allel; aj is marker 
of locus effects; dj indicates whether SNP has an effect (or not); and ei is the residual 
for animal i. BGLR package randomly simulates samples from the desired posterior 
density by Gibbs sampler with scalar updating [Perez and de los Campos 2014]. 

 Bayesian ridge regression (BRR) assume each regression coefficient in model (1) 
shrinking towards to zero by common variance using independent Gaussian priors. 
Bayesian Least Absolute Shrinkage and Selection Operator (LASSO) uses stronger 
weights [Park and Casella 2008] for penalizing SNPs with small effects by employing 
Laplace prior distribution. Bayes A employs a scaled t prior distribution for SNP 
effects [Meuwissen et al. 2001] assuming many SNPs of small effect and few of major 
effect. Bayes B [Meuwissen et al. 2001] uses a mixture of two distributions (SNPs 
with and without effects) for predictions of SNP effects in model (1) assuming many 
SNPs with zero effect and few of with a t distribution of effects. Bayes Cp [Habier 
et al. 2011] is comparable with Bayes B except: prediction of p parameter to detect 
proportion of the SNPs with effects on the phenotype. 

Machine Learning models

Baker et al. [2020] proposed two methods for SNP selection (to be used in ML 
models) is based on (1) ranked P-values from a linear mixed model GWAS analyses 
[Perdry and Dandine-Roulland 2015] and (2) select SNPs solely based on ranking 
of mean differences of allele frequencies by comparing cases and controls. The 
performance of the ML models depended on the genetic architecture of the trait: 
therefore, different number of SNPs (5 to 15000 SNPs) were used for the ML analyses.

Different ML methods have been proposed [Baker et al. 2020] for genomic 
classification analyses of the binary phenotype: weighted subspace random forest 
(wRF), gradient boosted trees (GBT), naïve Bayes (NB) and K-nearest neighbors 

(1)
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(KNN). wRF is an method to explore relation among SNPs and binary phenotypes 
by recursive algorithm that aims to classify animals into clusters by reducing group 
heterogeneity [Zhao et al. 2017]. wRF was implemented by minimum 1000 trees and 
the square root of the number of features at each tree classification [Baker et al. 2020]. 
While wRF are well defined for tree discovery, associated another model GBT has 
advantages in terms of smaller mean square errors [Chen et al. 2015] with additional 
hyperparameter tuning for the parameter estimations. Hyperparameters was tuned 
with 5 fold cross validation based on analyses of [Baker et al. 2020]: learning rate 
(eta)=0.05, minimum loss reduction (gamma)=0.3, subsample ratio of columns when 
constructing trees=0.8, subsample ratio of training instances=0.8 with 1000 rounds 
of training. NB [Dimitriadou et al. 2017] is one of the most common ML algorithm 
based on Bayes theorem. One advantages of the NB classification is that it avoids 
the problem of computational burden compared with the other ML algorithms. The 
KNN [Kuhn 2008] was used to obtain classification model based on the whole SNP 
data. The advantages of KNN are that simplicity as the model do not use the training 
stage. However, there are certain drawbacks associated with the use of NB and KNN 
in genomic classification research due to huge number of features or inputs (SNPs). 

Results and discussion

Quality control thresholds based on minor allele frequencies (<0.05), call rate 
of genotypes (>0.95) and Hardy Weinberg proportions (P<1E-07) were applied to 
SNP genotype data. A total of 573922 SNPs was identified after the quality control 
process. Square of correlations (r2) obtained from pairwise SNPs over windows size 
of 50 SNPs with a step size of 5 [Grinberg et al. 2020] at threshold 0.7 reduced the 
data to 197.186 SNPs (Fig. 1). After removing lowly correlated (genomic inbreeding 
coefficient >0.09) animals from the dataset, 61 animals remained to be used in PS 
analyses. 

Genomic prediction of hairy syndrome

Fig. 1. Decay of linkage disequilibrium over physical distance.
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Bayesian Learning analyses

As shown in Figure 2 the Bayesian analyses reported similar prediction accuracies 
(around to be 0.80) over different models and experimental design. Genotypes are 
characterized by LD decay with low variation (Fig. 1) over chromosomal base pair 
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Fig. 2. Prediction accuracies obtained for Bayesian learning models from 10-fold cross validations with 
removing SNPs using linkage disequilibrium.

Fig. 3. Prediction accuracies obtained for Bayesian learning models from 10-fold cross validations without 
removing SNPs using linkage disequilibrium.

Fig. 4. Prediction accuracies obtained for Bayesian learning models from 10-fold cross validations based 
on individuals removed by genomic relationship matrix (<0.09).
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locations. To investigate the effect of LD to different BL models, Figure 2 and 3 
provides an overview of prediction accuracies with and without LD correction, PS (Fig. 
4) and LD correction with PS (Fig. 5). There are little differences in the accuracies of 
Bayes C  compared with other Bayesian models especially for LD pruning (accuracy 
of Bayes Cp  found to be 0.82) (Fig. 2), PS (accuracy of Bayes C  found to be 0.82) 
(Fig. 4) and LD pruning with PS (accuracy of Bayes C  and BL found to be 0.83) 
experimental designs (Fig. 5). 

Machine learning analyses

Table 1 illustrates best prediction accuracies obtained from ML analyses under 
different experimental settings. There was evidence that LD has an influence on SNPs 
selection process using GWAS or mean differences among SNPs. A clear benefit of 
SNPs removal based on LD level for increasement of GP identified (Tab. 1) under 
various experimental designs. From Table 1 we can see that GWAS based SNPs 
selection resulted in the highest prediction accuracies over different experimental 
designs, except with the full genotypic dataset (Table 1: section “No SNPs removed 
for Linkage Disequilibrium). 

Means for model predictions over all folds reported for SNPs removed for LD, 
with full genotypic data, SNPs selected by GWAS and mean differences of allelic 
frequencies, animals removed by genomic relationship matrix and combinations of 
various experimental designs given in Figure 6: (A) Model comparison with LD 
pruning (r2>0.7) using GWAS SNPs. (B) Model comparison without LD pruning 
using GWAS SNPs; (C) Model comparison without LD pruning using mean allelic 
differences of SNPs. (D) Model comparison with individuals removed by genomic 
relationship matrix (genomic inbreeding coefficient >0.09) using GWAS SNPs. 
(E) Model comparison with individuals removed by genomic relationship matrix 
(genomic inbreeding coefficient >0.09) using mean allelic differences of SNPs. (F) 

Genomic prediction of hairy syndrome

Fig. 5. Prediction accuracies obtained for Bayesian learning models from 10-fold cross validations with 
removing SNPs using linkage disequilibrium and lowly correlated animals.
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Model comparison with LD pruning (r2>0.7) and individuals removed by genomic 
relationship matrix (genomic inbreeding coefficient >0.09) using GWAS SNPs. 
(G) Model comparison with individuals removed by genomic relationship matrix 
(genomic inbreeding coefficient >0.09) using mean allelic differences of SNPs. (F) 
Model comparison with LD pruning (r2>0.7) and individuals removed by genomic 
relationship matrix (genomic inbreeding coefficient >0.09) using mean allelic 
differences of SNPs.

B. Karacaören  

 Table 1. Best performing machine learning models obtained from 
different experimental settings over 10 fold cross 
validation procedure 

 

Model  Feature 
Selection  No. SNPs  AUC (SD) 

No SNPs removed for Linkage Disequilibrium 

wRF  GWAS  15000  0.807 (0.104) 
 meanDiff  15000  0.834 (0.107) 

GBT  GWAS  15000  0.800 (0.110) 
 meanDiff  15000  0.810 (0.130) 

NB  GWAS  15000  0.660 (0.074) 
 meanDiff  15000  0.695 (0.091) 

KNN  GWAS  1000  0.648 (0.069) 
 meanDiff  10000  0.621(0.104) 

Highly Correlated SNPs removed for Linkage Disequilibrium 
(r2>0.7) 

wRF  GWAS  15000  0.998 (0.004) 
 meanDiff  15000  0.807 (0.004) 

GBT  GWAS  12500  0.994 (0.006) 
 meanDiff  15000  0.800 (0.110) 

NB  GWAS  100  0.734 (0.058) 
 meanDiff  15000  0.660 (0.074) 

KNN  GWAS  5000  0.649 (0.109) 
 meanDiff  1000  0.648 (0.069) 

Lowly Correlated Individuals removed by using  
Genomic Relationship Matrix (>0.09) 

wRF  GWAS  12500  0.854 (0.108) 
 meanDiff  12500  0.766 (0.173) 

GBT  GWAS  12500  0.772 (0.099) 
 meanDiff  12500  0.661 (0.138) 

NB  GWAS  250  0.767 (0.061) 
 meanDiff  15000  0.712 (0.076) 

KNN  GWAS  15000  0.692 (0.157) 
 meanDiff  25  0.631 (0.110) 

Lowly Correlated Individuals (<0.09) and highly correlated  
SNPs (r2>0.7) removed  

wRF  GWAS  15000  0.922 (0.044) 
 meanDiff  15000  0.804 (0.099) 

GBT  GWAS  15000  0.958 (0.027) 
 meanDiff  7500  0.707 (0.172) 

NB  GWAS  250  0.780 (0.060) 
 meanDiff  15000  0.751 (0.086) 

KNN  GWAS  1000  0.694 (0.125) 
 meanDiff  250   0.639 (0.100) 
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From Table 1 it can be seen that wRF resulted highest accuracies under most of 
the experimental settings. As shown in Figure 6, the wRF with GWAS selected SNPs 
of 15000 gave the best prediction accuracy (AUC=0.998(0.004)). LD pruning and 

Genomic prediction of hairy syndrome
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removal of lowly correlated animals increased the AUC values of wRF and GBT (Tab. 
1 and Fig. 6). Prediction accuracies did not improve as more SNPs were included to 
the NB and KNN (Fig. 6).  

In reviewing the literature, no data was found on genomic prediction of hairiness 
using ML and BL methods in dairy cattle. The present study was designed to determine 
the effect of genetic architecture by using different number of SNPs, SNP selection 
criteria’s and various ML and BL model for take into underlying gene actions for 
predicting the phenotype. BL models with different prior distributions [Gianola 2013] 
was designed to determine the effect of various genetical architecture scenarios: 
ranging from polygenic model to major gene effects. In accordance with the increased 
prediction accuracies obtained from Bayes Cp (Fig. 1) previous studies [Dikmen et al. 
2013, Dikmen et al. 2014, Karacaören 2016, Littlejohn et al. 2014] have shown that 
some polygenes are associated with hairiness and heat stress. This outcome is slightly 
contrary to that of [Baker et al. 2020] who did not find prediction accuracy differences 
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Fig. 6. Prediction accuracies obtained from 10-fold cross validation with models trained from 5 to 15000 
SNPs under various experimental designs.
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over different BL models.  In addition, the prediction accuracies in this investigation 
were higher compared with the BL results of [Baker et al. 2020]. There are several 
possible explanations for this result. The observed increase in prediction accuracies 
in general (and particularly for Bayes Cp) could be attribute to conjugation of genetic 
architecture of our phenotype and corresponding BL model assumptions. Baker et al. 
[2020] showed that their phenotype showed polygenic inheritance and did not match 
with the prior assumptions of their BL models. 

To investigate the association between the selected number of SNPs chosen by 
the GWAS or mean differences: we reported the prediction accuracies of 10-fold 
cross validation process from ML analyses (Tab. 1). We observed (Fig. 3) that the 
prediction accuracy of the SNPs obtained from GWAS (based on P values) found 
to be higher, however the finding of the current study do not support the results of 
[Baker et al. 2020]. It has been suggested that SNPs filtering using mean differences 
should be advantageous [Baker et al. 2020] in case/control design but this was 
not the case in our results (Tab. 1). This inconsistency may be due to differences 
between genetical architecture underlying the phenotypes of the current study and 
the phenotype of [Baker et al. 2020]. Our results corroborate the ideas of Karacaoren 
[2016] and Littlejohn et al. [2014] who reported mutations and associated SNPs with 
the hairiness in dairy cattle. Hence, it could conceivably be hypothesised that when 
there is a major gene in association with the phenotype: SNPs selection using results 
of GWAS could be more informative. 

This study set out with the aim of assessing the importance of LD for genomic 
prediction of hairiness using BL and ML models. Consistent with the literature [Baker 
et al. 2020, Grinberg et al. 2020] this research found that usage of LD pruned data 
with wRF and GBT increased the prediction accuracies (Tab. 1). Generally, prediction 
accuracies are higher when using wRF and GBT compared with NB and KNN (Tab. 
1). These results are in accord with recent studies indicating that NB and KNN might 
have misclassification problem [Baker et al. 2020] with huge number of SNPs. It can 
be seen from the data in Table 1 that the NB and KNN reported significantly different 
results under different SNP selection criteria’s more than the other wRF and GBT. 
However, with successive decreases in number of SNPs (Figure 3) the prediction 
accuracies found to be higher in NB and KNN compared with wRF and GBT in all 
experimental designs (Tab. 1). This finding is partly consistent with that of Srivastaka 
et al. [2021] who compared the genomic predictive performance of RF, GBT and 
support vector machines for  various phenotypes of Hanwoo cattle.  From Table 1 we 
can see that NB with only 100 GWAS selected SNPs (in linkage equilibrium) resulted 
with 0.734 (0.058) prediction accuracy. When genomic relationships were considered, 
the prediction accuracy of KNN was found to be 0.631 (0.110) with only 25 SNPs 
selected based on mean differences of cases and controls (Fig. 3). Taken together, 
these results suggest that both NB and KNN could be useful in genomic prediction 
with smaller number of informative SNPs in expense of lower prediction accuracies 
compared with wRF and GBT. 

Genomic prediction of hairy syndrome
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Increased prediction accuracies in the ML models corroborates with the results of 
[Abdollahi-Arpanahi et al. 2020]. A possible explanation for better results obtained 
by wRF and GBT might be related with the genetic architecture of the hairiness. 
Since hairiness was found to be associated with small number of SNPs [Karacaoren 
2016, Littlejohn et al. 2014], with possibly nonlinear gene actions, wRF found to be 
the superior model in terms of prediction accuracy. These results are in agreement 
with Grinberg et al. [2020] findings which showed the superiority of random forest 
under different experimental designs. Further these results reflect those of Li et al. 
[2018] who also found higher accuracies by random forest algorithms due to captured 
nonlinear gene actions in Brahman cattle. There are similarities between the increased 
prediction accuracies obtained by wRF and those described by Fitzpatrick et al. [2021] 
employed various random forest algorithms for associating genomic information into 
climate change impact assessments. 

The present study was designed to determine the effect of various experimental 
design to prediction accuracies of BL and ML models for genomic prediction of 
hairiness in dairy cattle including LD pruning, PS and LD and PS. The most obvious 
finding to emerge from this study is the superiority of ML model over BL models 
for genomic prediction of the phenotype. The results of this investigation show 
the importance of LD pruning in GP using ML. This study supports evidence from 
previous observations [Nicholls et al. 2020] on beneficial usage of ML model in 
genetics and genomics research. The relevance of wRF is clearly supported by the 
current findings. Despite its relatively small sampling size: these data suggest that ML 
prediction of hairiness can be achieved through high prediction accuracies hence the 
finding of this study have a number of important dairy cattle breeding implications for 
future practice in response to the climate change problem.
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