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The experiment described in this study was designed to test the effect of rare variants on the 
genomic prediction in dairy cattle. Common polymorphisms are capable of explaining only a 
small proportion of the underlying genetic variation of complex phenotypes. Variants representing 
functional mutations with large effects on complex phenotypes are expected to be rare due to 
natural or artificial selection pressure. Therefore, it is important to check whether the use of rare 
variants could increase the accuracy of ranking of animals by providing a tool for more precise 
differentiation between bulls with a high additive genetic merit. The goal of our study was to verify 
whether including rare variants in a genomic selection model provides a more accurate description 
of the additive genetic background of traits under selection in dairy cattle. The number of animals 
used in the analyses varies and depending on the trait it ranged from 77,578 individuals for type trait 
to 100,650 individuals for somatic cell score. We used the linear mixed model to compare estimates of 
SNP effects for Holstein-Friesian cattle of the two data sets – a set containing only single nucleotide 
polymorphisms defined by minor allele frequency greater than 1%, which is routinely used in the 
Polish genomic evaluation system (46,216 SNPs), and a set containing SNPs selected based only on 
the call rate (54,378 SNPs). Based on the SNP estimates we also calculated Direct Genomic Values 

*Calculations were carried out using resources provided by the Wroclaw Centre for Networking and 
Super-computing (http://wcss.pl), grant no. 509. 
**Corresponding author: michalina.jakimowicz@upwr.edu.pl



136

(DGV) and Genomically Enhanced Breeding Values (GEBV) and compared them between both 
data sets. IAll the analyses were conducted for production, fertility, conformation and udder health 
traits. We also assessed the time required for the two most computationally demanding components 
of genomic selection, i.e. preparation of genotype data and estimation of SNP effects between those 
two data sets. The results of our study indicated that the analysis including rare variants resulted 
in changes in the individual ranking of the top 100 male and female candidates, whereas it had no 
effect on the outcome of the quality of EBV prediction as expressed by the Interbull validation test.

KEY WORDS: rare variants / genome-wide association study / validation test /  
                                     SNP chip / genomic selection

Predicting phenotypes from genotype data is important for plant and animal 
breeding, as well as evolutionary biology. Genomic-based phenotype prediction 
has mostly been applied using data from single-nucleotide polymorphism (SNP) 
genotyping platforms. Usually, the set of markers included in the final analysis is 
edited based on minor allele frequency (MAF) and call rate. Such filtering leads to a 
result where additive effects of SNPs with rare genotypes are not considered in the 
analysis, so that the impact of such markers on estimated breeding values is neglected.

Rare genetic variants, i.e. polymorphisms with a lowminor allele frequency, 
typically below 1%, have been brought into focus in the context of genetic 
determination of complex traits [Bomba et al. 2017, Schaid et al. 2018]. This stems 
primarily from the so-called “missing heritability” indicated for most of the complex 
phenotypes measured in humans, indicating that the common polymorphisms are 
able to explain only a small proportion of the underlying genetic variation of such 
traits ranging between 1.5% and 50% [Manolio et al., 2009]. Variants representing 
functional mutations with large effects on complex phenotypes are expected to be rare 
because of natural or artificial selection pressure against an unfavourable allele [Hayes 
and Daetwyler 2019]. The biological explanation is that since a mutation is functional, 
it is subjected to selection, which as a consequence affects population allele frequency 
more strongly than in the case of a neutral mutation [Frazer et al. 2009]. The effect of 
selection pressure is also strong on coding functional variants and would affect more 
fitness traits because of lower average heritability of those phenotypes.

Indeed, in human populations a number of studies has indicated associations 
between rare variants and complex traits [Sulem et al. 2011; Styrkarsdottir et al., 
2013]. Also, in yeasts (Saccharomyces cerevisiae) the importance of rare variants in 
phenotypes of quantitative traits was greater than might have been expected based 
on their occurrence (while only 27.8% variants were defined as rare, they constituted 
51.7% of the median contribution for all traits). Moreover, quantitative trait loci 
(QTLs) commonly found in rare variants had larger substitution effects, while those 
with an abundance of common variants were less influential [Bloom et al. 2019]. 
Dairy cattle is a very good population facilitating verification of this hypothesis. It has 
undergone directional selection for production traits over many generations and has 
very good records of complex traits and familial relationships. Moreover, the recent 
success of genomic selection has provided extensive information on genotypes of 
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single nucleotide polymorphisms distributed over the whole genome, available for 
many individuals.

 Therefore, the goal of our study was to verify whether including rare variants 
in a genomic selection model provides a more accurate description of the additive 
genetic background for traits under selection in dairy cattle. The analysis involved 
comparisons of two data sets – a set containing only SNPs defined by MAF greater 
than 1% and call rate over 99%, which is routinely used in the Polish genomic 
evaluation system, and a set containing SNPs selected based only on the call rate. For 
both data sets we compared (1) estimates of the effects of common SNPs; (2) changes 
in bull rankings based on genomically enhanced breeding values (GEBV); and (3) 
results of the Interbull validation test. The analysis also covered time required (CPU 
time) for the two most computationally demanding components of genomic selection: 
preparing genotype data and estimation of SNP effects between those two data sets.

Material and methods

Reference animals

The analyzed data set originated from the EuroGenomics Cooperative 
U.A. Holstein-Friesian dairy cattle population. For each bull born before 2010, 
pseudophenotypes were available in the form of deregressed breeding values (DRP) 
corresponding to the Interbull evaluation from April 2020. In the comparison we 
considered traits representing different functional groups, including one production, 
two fertility, two conformation, one udder health and one longevity trait. Specifically, 
the analyzed traits comprise protein yield (PRO), heifer conception rate (HCO), cow 
conception rate (CC1), stature (STA), type (TYP), somatic cell score (SCS) and 
functional longevity (DLO). The numbers of reference bulls for each of the considered 
traits are presented in Table 1. For all the traits except for TYP, the EuroGenomics 
reference population was used. For TYP, which is not evaluated internationally, 
we used the national reference population. Apart from different selection pressures 
(expressed by different weights in the total merit index) and different sizes of reference 
populations, traits were also selected to represent varying levels of heritability. HCO 
and CC1 are low-heritable traits, DLO, PRO, TYP and SCS are moderately heritable, 
while STA has high heritability. The heritability estimates corresponding to the Polish 
Holstein-Friesian population are presented in Table 1.

Most of the reference individuals (87%) were genotyped using the Illumina 
BovineSNP50 BeadChip Version 2. All individuals genotyped using other platforms 
were imputed to the above microarray using the Beagle software [Browning and 
Browning 2009]. Almost all the imputed animals were genotyped using the EuroG10K 
BeadChip v2-5. In the final analysis two data sets of SNP genotypes were used: (i) 
ORIG consisting of 46,216 SNPs representing the standard common SNP set used for 
the routine genomic evaluation in Poland, and (ii) RARE comprising 54,378 SNPs 
without preselection on MAF, including common and rare polymorphisms. The SNP 

Rare variants



138

selection criterion for ORIG comprised MAF of min. 0.01, while for the RARE data 
set SNPs were not preselected for MAF. For both data sets SNPs with unspecified 
genomic positions and with a call rate below 99% were removed.

Validation animals

For the trend validation of Genomically Enhanced Breeding Values (GEBVs) 
bulls born after 2010 were used, with pseudophenotypes expressed by DRPs from 
MACE (CC1, DLO, HCO, PRO, SCS, and STA) or DRP based on the national EBV 
(TYP). In addition, top 100 rankings of GEBVs estimated based on the ORIG and 
the RARE data sets for the validation bulls and cows born after 2010 were compared. 
All the bulls in the validation data set were originally genotyped using the Illumina 
BovineSNP50 BeadChip Version 2, while 93% of cows were genotyped using the 
EuroG10K BeadChip v2-5.

SNP effect estimation

The following mixed model [Szyda et al. 2011] was used to estimate the additive 
effects of SNPs:

                                  y = μ + Z1g + Z2a + ε                                                        (1)
where y represents the vector of deregressed breeding values of the reference bulls 
(for all the traits except for TYP we used deregressed MACE EBVs calculated for 
the Polish scale and for TYP we used deregressed national EBVs), μ is the general 
mean, Z1 is the design matrix for SNP genotypes, which is parameterized as -1, 0, or 
1 for thea homozygous, heterozygous and an alternative homozygous SNP genotype, 
respectively, g is the vector of random additive SNP effects, Z2 is the design matrix 
for a polygenic effect, a is the vector of random “residual” additive polygenic effects 
of bulls, which is important to reduce the inflation of genomic prediction with actual 
data and to account for the incomplete linkage disequilibrium between the SNPs and 
genes or causal mutations of the analyzed phenotypes [Liu et al. 2016]. ε is the vector 
of error terms with                        , where D is the diagonal matrix containing the 
reciprocal of bulls’ effective daughter contributions (EDC; for all the traits except for 
TYP we used EDC from the MACE evaluation calculated on the Polish scale, for TYP 
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𝜺𝜺~𝑁𝑁(0,𝑫𝑫�̂�𝜎𝑒𝑒2) 

 Table 1. Summary of analyzed sub-sets of individuals and trait characteristics 
 

Trait 

 Number of bulls in 
the reference 

population born 
before 2010 

 Number of 
validation bulls 
born after 2010 

 Number of 
cows born after 

2010 

 

Heritability 

 Ratio of genetic 
variance for 

additive polygenic 
effect (%) 

Protein yield  34,249  23,001  43,392  0.290  20 
Heifer conception rate  31,509  23,553  43,392  0.027  40 
Cow conception rate  33,534  23,448  43,392  0.028  40 
Stature  33,299  23,566  43,392  0.540  30 
Type    4,838  29,348  43,392  0.330  40 
Longevity  21,795  25,998  43,392  0.173  40 
Somatic cell score  34,168  23,090  43,392  0.320  20 
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we used EDC from Poland) on the diagonal and       representing the error variance. 
The covariance structure of g was assumed to be                           with I being the 
identity matrix,       representing the additive genetic variance of a given trait and 
NSNP being the number of SNPs used (here 46,216 for ORIG and 54,495 for the 
RARE data set) assigning the same small fraction of the polygenic variance to each of 
the NSNP polymorphisms.                       , where A is the numerator relationship matrix 
and       is the predetermined ratio of additive genetic variance for each of the traits, 
the same as assumed for the routine genomic evaluation in Poland. The variance ratio 
for each trait is presented in Table 1.

The estimation of parameters inof the above model was based on solving the 
mixed model equations [Henderson 1984]:

Rare variants
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where                ,                                         . Consequently, the variance of y is then 

given by                                . The variance components of model (2) were  not estimated 
and taken as known parameters from routine evaluation in Poland.

Model (1) is a component of the Polish routine genomic evaluation system of 
programs custom written using the SAS package 9.3 version and FORTRAN,. Rrun 
under the Suse Linux Bourn shell environment.

The effects of particular SNPs (gi) were tested for significance, i.e. H0: gi ≠ 0 vs. 
H1: gi ≠ 0 using the Wald test: 

σ̂a
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𝒈𝒈~𝑁𝑁 (0, 𝑰𝑰 σ̂a2

Nsnp
), 

σ̂a
2 

𝒂𝒂~𝑁𝑁(0, 𝑨𝑨σ̂a∗2 ) 
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where ĝi is the estimate of SNP i and SE(ĝi) is the standard error of effect ĝi. Because 
of  the standard errors of individuals SNPs are not available whenand in calculating 
the Wald test for each SNP the same standard error was assumed. The null distribution 
of the W statistics is standard normal distribution. Because very often random effects 
are assumed to be normally distributed it is common practice to use W statistics to test 
significance of random SNP effects [Suchocki et al. 2020, Kosińska-Selbi et al. 2020]. 

Interbull validation test

In the validation we used two data sets: full and truncated. The full data set consisted 
of all available bulls with daughter information, whileand the truncated data set 
consisted only of bulls born before 2010. The genomic evaluation was validated by 
comparing the GEBVs of bulls born after 2010 to their DRPs obtained from the full 
data set [Mantysaari et al. 2010]. The bias of the genomic evaluation was estimated 
using the following weighted linear regression model:
                                                         y = β0 + β1 · GEBVr + e                                                                                           (3)                          
where y represents the vector of deregressed breeding values for bulls, which have 
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effective daughter contributions higher than 20 in the full data and EDC equal to 0 in 
the truncated data, GEBVr is the vector of GEBV obtained for the truncated data set. The 
weights used in the covariance of the residual vector in Model (3) were expressed by:
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𝑡𝑡 = |�̂�𝛽1 − 𝐸𝐸(𝛽𝛽1)|
𝑆𝑆𝐸𝐸(�̂�𝛽1)

 

𝑤𝑤𝑖𝑖 =
𝐸𝐸𝐸𝐸𝐶𝐶𝑖𝑖

𝐸𝐸𝐸𝐸𝐶𝐶𝑖𝑖 + 𝑘𝑘, 

where EDCi is the effective daughter contribution of bull i in the full data set and 
                  represents the heritability of the trait. The quality of DRP prediction based 
on GEBV defined by model (3) was compared to the quality of prediction based on 
the parental information (PI) expressed by the following model:
                                        y = β0 + β1 · PIr + e  
where PIr is the pedigree index for the truncated data set. The validation test is passed 
by fulfilling the following conditions: (i) hypothesis H0:β1=E(β1), tested based on the
t statistics,                    is accepted aton the 5% significance level; note that β1 and
SE(β1) are estimated with model (3) and in the case of our data, where all the validation 
bulls are genotyped E(β1) = 1, (ii) the coefficient of determination R2 from model (3) 
is higher than R2 from the model (5).

Comparison of different data sets

 In view of the lack of independence of the data sets calculated based on ORIG 
and RARE for comparison  we used the Spearman rank correlation coefficient.

Results and discussion

We observed differences in minimum MAF between the ORIG and the RARE 
data sets. For ORIG the minimum MAF was 0.011, while for RARE it was 0.002. We 
observed no differences between the mean, and maximum MAF between those data 
sets.

There are two most computationally burdened components of the genomic 
evaluation system: (i) estimation of the SNP effects, and (ii) preparation of pedigree 
and genomic data files. Using markers without preselection based on MAF in genomic 
selection increased the average computational time for the estimation of SNP effects 
by 14.9% on average, ranging from 6.8% for SCS to 28.0% for CC1. However, for 
the second most computationally burdened component of genomic selection, i.e. 
preparation of pedigree and genomic data files, there was no significant difference in 
computational time. The computational time of the analyses is presented in Figure 1. 
The estimators of SNP effects were consistent between evaluations based on common 
SNP present in the ORIG and RARE data sets. The Spearman rank correlation 
coefficients between SNP effects common to both data sets were at least 0.999 for 
all the considered traits. Additionally, no rare SNP effect was statistically significant 
based on the Wald test. Despite such a high correlation of SNP effects between the 
two data sets, we observed changes in the ranking of the top 100 candidate bulls 

(4)                          

𝑘𝑘 = 4−ℎ2
ℎ2 . ℎ2 

(5)                          
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Rare variants

Fig. 1. Time in seconds [s] and time 
increase [%] for using the RARE data set 
in two main time-consuming elements 
of the genomic evaluation system. PREP 
= preparation of data sets for all traits, 
animals and SNPs. SNP ESTIMATION = 
SNP effect estimations.

Fig. 2. Re-ranking of 100 top candidate bulls 
based on the RARE data set as compared to the 
ORIG data set.

Fig. 3. Re-ranking of 100 top candidate cows 
based on the RARE data set as compared to the 
ORIG data set.
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and cows born after 2010 as well as the top 100 reference bulls born after 2000. The 
greatest drop in the ranking of the top 100 candidate bulls was 35 for a bull evaluated 
for HCO, while the greatest increase in the ranking was 18 for bulls evaluated for both 
PRO and SCS. Moreover, in the evaluation for HCO and PRO seven bulls that were 
outside the top 100 ranking based on the ORIG data set were found in the top 100 
ranking in the evaluation based on the RARE data set. For cows the maximum drop/
increase in the top 100 ranking was found for TYP (28/30). Note that the SNP effects 
for this trait were estimated based on the national data, thus the ranking was the least 
stable. For the reference bulls the ranking rearrangements were lower. The maximum 
drop in the top 100 ranking was 15 for TYP, while among the traits evaluated based 
on the EuroGenomics reference population it ranged between 2 (DLO and PRO) and 
7 (CC1). The maximum increase in the ranking was 28 for HCO. Also, the number of 
reference bulls that dropped out of the top 100 group defined by the ORIG evaluation 
was very low, between 0 (SCS) and 2 (TYP). Detailed information regarding changes 
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Fig. 4. Re-ranking of 100 top reference bulls based on the RARE data set as compared to the ORIG data 
set.
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in ranking for candidate and reference animals is presented in Figures 2-4. Less re-
ranking among the top ranked reference individuals proves that the genomic evaluation 
is stable and reliable.

For the results of the Interbull validation test there were no considerable differences 
between the RARE and ORIG data sets. Regardless of the data set used, all the traits 
evaluated based on the EuroGenomics reference population (CC1, HCO, DLO, PRO, 
SCS, STA) passed the validation test and regardless of the data set the estimated 
intercepts were very close to the expected ones, with the greatest difference of 0.190 
observed for DLO with the RARE data set. Conversely, the trait evaluated based on 
the national reference population (TYP) failed the test regardless of the data set. The 
quality of EBV prediction expressed by the coefficient of determination (R2) varied 
markedly between the traits, ranging from 61.2% for STA with ORIG data to 10.2% 
for HCO with RARE data. However, it was not influenced by the inclusion of rare 
variants, since differences in R2 between predictions based on the ORIG and RARE 
data sets were always less than 1%. The results of the Interbull validation test are 
summarised in Table 2. 

Rare variants

The traits in the analysis were selected to represent a range of heritabilities (e.g. 
STA vs HCO) and the size of the reference population (e.g. PRO vs TYP). Although 
we did not have any a priori expectations, the selection was made to enable the 
detection of an eventual different impact of including rare variants depending on the 
trait. However, this was not the case.

The functional consequences of enrichment of rare variants had already been 
demonstrated by the 1000 Bulls Genome Project Consortium [Hayes and Daetwyler 
2019]. For instance, rare variants (i.e. MAF<0.005) representing non-synonymous 
mutations amounted from 0.09% to 1.33% of all rare SNPs, while among common 
SNPs (i.e. MAF>0.05) non-synonymous mutations it was only between 0.06% and 

 Table 2. A comparison of summary statistics of the Interbull genetic trend validation test based on the ORIG 
data set (upper line) and the RARE data set (bottom line) 

 

Trait      R2model(3)  R2model(5)    Result of 
Interbull test 

Stature  1.065 
1.089 

 0.012 
0.012 

 61.2 
60.6 

 13.1  0.065 
0.089 

 passed 
passed 

Type  0.724 
0.730 

 0.059 
0.060 

 12.2 
11.8 

 1.9  0.276 
0.270 

 did not pass 
did not pass 

Protein yield  0.996 
1.014 

 0.015 
0.015 

 42.1 
41.5 

 2.3  0.004 
0.014 

 passed 
passed 

Heifer conception rate  1.022 
1.075 

 0.039 
0.042 

 10.4 
10.2 

 0.9  0.022 
0.075 

 passed 
passed 

Cow conception rate  1.081 
1.131 

 0.027 
0.028 

 20.4 
20.1 

 2.4  0.081 
0.131 

 passed 
passed 

Somatic cell score  0.939 
0.955 

 0.012 
0.013 

 47.9 
47.4 

 10.1  0.062 
0.045 

 passed 
passed 

Longevity  1.122 
1.190 

 0.064 
0.067 

 22.5 
22.7 

 3.4  0.122 
0.190 

 passed 
passed 
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0.09%. Therefore, in the presented study we investigated the influence of rare SNP 
variants on the genomic evaluation of Polish Holstein-Friesian cattle. For this purpose 
we used two data sets, one with rare variants and the other without them. None of the 
rare SNP effects was significant, although we noted changes in the ranking of the top 
100 candidate bulls. The obvious drawback of using the 50K Illumina SNP chip to 
track rare variants is that commercial microarray platforms were designed to harbour 
common variations. Still both in our data and in other national Holstein-Friesian 
populations genotyped using the chip, one can well track what is called “low frequency 
variants” in human genetic application, i.e. variants with MAF ranging between 0.005 
and 0.01. Even such polymorphisms show an excess of non-synonymous variants in 
human genomes (0.04%-0.76%) as compared to common SNPs.

The use of rare variants in genomic selection has some disadvantages. It lengthens 
computational time. The accuracy of genotyping rare SNPs is lower compared to SNPs 
with more balanced genotype counts, as is the accuracy of such SNP effect estimation. 
Moreover, including low frequency SNPs does not affect the outcome of the Interbull 
validation test, since the effects of rare SNPs are less accurately estimated, which 
undermines the advantage of having them in the EBV prediction model. However, on 
the basis of individual animals the use of rare SNP information can provide a more 
accurate ranking of selection candidates, which is due to the fact that the differentiation 
among top ranked individuals with high GEBVs can be made more accurate by including 
the extra information from additional SNPs. This has further implications for genomic 
evaluation based on whole-genome sequence data [Druet et al. 2014, O’Connell et al. 
2016], although not in a rare SNP context, in which the amount of low frequency SNPs 
will be much greater than in our study. It is also worth noting that the use of rare variants 
may vary depending on the methodology used for SNP prioritizing, potentially yielding 
results with different degrees of accuracy. Such a comparison is presented between the 
BayesB, BayesC and Fst methods [Chang et al. 2018], indicating greater genomic and 
phenotypic accuracy of the latter (in most cases), providing a more appropriate tool 
for analyses that include rare variants. In genomic selection based on whole-genome 
sequences, rare variants could well have a stronger impact on selection, the Interbull 
validation process and evaluation reliability. Still it has to be kept in mind that for the 
purpose of predicting of genomic breeding values, defined as the cumulative additive 
genetic effect of all possible causal mutations, the addition of rare variants does not 
necessarily provide an improvement. In artificially bred populations remaining under a 
directional selection for many decades, such as dairy cattle, high linkage disequilibrium 
allows for the estimation of genomic effects accurately even with a moderate number 
of highly polymorphic markers (i.e. with moderate MAF) markers. The most important 
advantage of inclusion of rare SNPs lies in the fact that they facilitate a more accurate 
assessment of effects of all SNPs from the genomic evaluation model, since the higher 
SNP density more precisely fits the polygenic nature of additive genetic variation. We 
can further hypothesize that this fact has implications for the greater accuracy of direct 
genomic values in individuals with rare alleles.

T. Suchocki et al. 
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