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Environmental challenges and preference of high-yielding breeds have resulted in extinction of 
various local cattle populations as well as the loss of genetic diversity in modern cattle breeds. Genetic 
diversity, however, plays a vital role both in cattle industry to meet current and future demand 
for milk and beef and in adaptation to different environmental challenges for animals. Thanks to 
developing molecular genetics and bioinformatics tools, genetic data including microsatellites and 
Single Nucleotide Polymorphisms (SNPs) can be detected across the genome and can be analysed to 
reveal genetic diversity within and between cattle populations. Until recently, microsatellite markers 
were commonly used to estimate genetic diversity in both local and exotic cattle breeds. Today, 
however, SNP arrays are the most preferred technology for genetic diversity analysis, since they 
are time-efficient and easy to access and apply. Moreover, developments in sequencing technology 
with affordable costs have made it possible to obtain SNP data across the genome via whole genome 
resequencing. It is foreseen that whole genome resequencing will be routinely used to estimate 
genetic diversity periodically not only in cattle but also in the other livestock species as well in the 
future. In this study, the most commonly preferred molecular methods to reveal genetic diversity 
in cattle were discussed and some bioinformatics tools to analyse genetic data were summarised.
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Introduction

As of domestication, cattle have mainly been a part of both diet and daily life of 
humankind [Abbink 2003, Caroli et al. 2009]. Today, cattle are reared in almost all 
parts of the world to obtain animal-derived products such as milk and beef providing 
essential amino acids, minerals and vitamins for human nutrition [Brito et al. 2021, 
Dawood et al. 2021]. Globally, 81% of milk and 21% of meat production are met by 
cattle [Kayikci et al. 2019, FAO 2022].

Cattle genome have been profoundly shaped by two events known as domestication 
and migration throughout history [Larson and Burger 2013, Senczuk et al. 2021]. 
Both archaeological and genomic data indicate that sharing the same ancestor 
(Bos primigenius), taurine (Bos taurus) and indicine (Bos indicus) cattle were first 
domesticated approximately 10.000 and 8.000 years ago in Fertile Crescent and Indus 
Valley, respectively [Pitt et al. 2019, Senczuk et al. 2021]. Domestication enabled 
early farmers to conduct non-systematic selection practises in which it is more likely 
that behavioural characteristics were taken into consideration rather than milk and 
meat yield [Larson and Burger 2013]. Additionally, cattle were introduced to new 
environmental conditions by human migration in which they developed adaptation 
to different environments via natural selection. These phenomena increased genetic 
diversity in locally adapted cattle populations [Groeneveld et al. 2010]. 

Genetic diversity defines the total of alleles and genotypes which shape the genome 
in terms of morphology, physiology and behaviour of an animal in a certain species 
[Frankham et al. 2002]. In livestock including cattle, maintaining genetic diversity at 
optimum level is of great importance to meet current and future production systems as 
well as demand for animal-derived products [Karsli et al. 2020a]. Additionally, genetic 
diversity is required for adaptation to diverse environmental stressors such as diseases 
and climate change [Demir et al. 2021a]. However, genetic diversity tends to decrease 
in both local and exotic cattle breeds due to many reasons [FAO 2019]. Today, several 
facts such as increasing human population, water and land scarcity for agriculture 
together with climate change have been forcing farmers to rear high-yielding cattle 
breeds [Srivastava et al. 2019]. Compared to local cattle breeds, exotic ones were 
developed based on genotype combinations of small part of genome including regions 
related to milk and meat traits. Today, these exotic breeds holding low genetic diversity 
are distributed across the world and are preferred by farmers for their high production 
capacity [FAO 2019]. On the other hand, local cattle populations not only conserve 
high genetic diversity but also they may carry unique genetic combinations related to 
environmental adaptation [Srivastava et al. 2019]. Unfortunately, effective population 
size of locally adapted native cattle breeds tends to reduce which directly decreases 
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genetic diversity as well. Besides, uncontrolled crossbreeding practices with exotic 
breeds results in genetic erosion in local cattle populations [Rahman et al. 2013]. 

Reduction in genetic diversity brings about conservation genetics in which 
genetic diversity can be detected via different molecular techniques. Today, numerous 
molecular techniques such as Polymerase Chain Reaction (PCR) based molecular 
markers, PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) [Karsli et al. 
2022], microsatellites [Demir and Balcioglu 2019], mitochondrial DNA (mtDNA) [Di 
Lorenzo et al. 2018], Y chromosome [Yalta-Macedo et al. 2021], SNP array [Bhuiyan 
et al. 2021] and even whole genome resequencing [Xia et al. 2021] are available to 
obtained genomic data in cattle. These data including microsatellites and SNPs can 
be further analysed by bioinformatics tools in order to estimate genetic diversity in 
cattle breeds. In this regard, this paper aims (i) to review commonly used molecular 
techniques to obtain genomic data and (ii) to summarize bioinformatics tools to reveal 
genetic diversity in cattle breeds.

Molecular detection of genetic diversity in cattle

Invention of the PCR by Kary Mullis in 1984 has fundamentally revolutionized 
molecular genotyping techniques. While molecular genotyping of livestock species 
including cattle was mainly based on RFLP, numerous PCR-dependent genotyping 
techniques such as Random Amplification of Polymorphic DNA (RAPD), PCR-
RFLP, Amplified Fragment Length Polymorphism (AFLP), microsatellites, mtDNA, 
Y chromosome etc., were discovered to reveal genetic variability in single gene or 
multiple loci [Shrivastava et al. 2018, Xia et al. 2019, Karsli et al. 2020b, Demir 
et al. 2020]. Additionally, based on selected breeds, numerous SNP arrays with 
variable densities are available to calculate genetic diversity within and between cattle 
populations. Recently, Olschewsky and Hinrichs [2021] have reviewed a total of 133 
scientific papers published between 2005 and 2020 in terms of molecular genotyping 
methods including AFLP, RFLP, Whole Genome Sequencing (WGS), Y chromosome, 
mtDNA, microsatellites and SNPs) in some major farm animals (cattle, sheep, goat, 
chicken and pig). Authors highlighted that the most preferred molecular techniques to 
reveal genetic diversity were microsatellites (48%) and SNPs (29%), whereas WGS 
is becoming popular (6%) since 2010 [Olschewsky and Hinrichs 2021]. Hence, in 
this study priority was given to microsatellites, SNP arrays and WGS for genetic 
characterization of cattle populations. 

Microsatellite markers in detection of genetic diversity in cattle

Microsatellites, also known as Short Tandem Repeats (STRs) or Simple Sequence 
Repeats (SSRs), refer to small DNA fragments generally less than 5 nucleotides which 
are distributed in both coding and noncoding regions across the eukaryotic genome 
[Bruford and Wayne 1993]. While microsatellite motifs are generally conserved in 
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livestock species, their repeat numbers show variability among different cattle breeds 
as well as among animals within a certain breed [Demir et al. 2021b]. Differences in 
repeat numbers of microsatellite markers result in presence of various alleles within 
cattle populations (Fig. 1). Based on these microsatellite alleles each individual 
could be easily genotyped. In microsatellite studies, loci are amplified with specific 
oligonucleotides also known as primers and band size are detected to obtain genotypes 
(Fig. 1). Since fragment size of PCR products may be close, they are visualised by 
fragment analyser devices rather than traditional agarose gel electrophoresis [Pashnick 
and Thum 2020]. Via bioinformatics tools, obtained genetic data could be further used 
to estimate genetic diversity parameters within and between populations.
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Fig. 1. An overview of microsatellite marker technique.

Microsatellites are of several advantages in revealing genetic diversity in cattle 
populations, since they are highly polymorphic, showing co-dominant inheritance, 
distributed across the genome, available in introns and exons, and easy to apply 
[Jaayid and Dragh 2013, Demir and Balcioglu 2019]. Microsatellite technique is also 
encouraged by Food and Agriculture Organization of the United Nations (FAO) in 
genetic characterization of livestock species [Demir and Balcioglu 2019]. Indeed, a 
list of 30 microsatellite loci has been published by FAO for 9 major livestock species 
including cattle not only for genetic characterization studies but also to make conducted 
studies comparable (Tab. 1) [FAO 2011]. Indeed, this panel of microsatellite loci 
allows for assessing genetic diversity from regional and/or national to international 
level meaning that genetic diversity in local cattle breeds could be assessed by the 
comparison of the results obtained from cosmopolitan breeds (dairy, beef and dual 
purpose) as well as the other local cattle breeds around the globe.
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 Table 1. Summary of microsatellite loci recommended by FAO 
 

Locus  Chr  PS (5’-3’)  AT (°C)  GAN  AR (bp) 

BM1824  1  F: GAGCAAGGTGTTTTTCCAATC 
R: CATTCTCCAACTGCTTCCTTG 

 55-60  G18394  176-197 

INRA023  3  F: GAGTAGAGCTACAAGATAAACTTC 
R: TAACTACAGGGTGTTAGATGAACTC 

 55  X67830  195-225 

ETH152  5  F: TACTCGTAGGGCAGGCTGCCTG 
R: GAGACCTCAGGGTTGGTGATCAG 

 55-60  Z14040 
G18414 

 181-211 

ETH10  5  F: GTTCAGGACTGGCCCTGCTAACA 
R: CCTCCAGCCCACTTTCTCTTCTC 

 55-65  Z22739  207-231 

ILSTS006  7  F: TGTCTGTATTTCTGCTGTGG 
R: ACACGGAAGCGATCTAAACG 

 55  L23482  277-309 

HEL9  8  F: CCCATTCAGTCTTCAGAGGT 
R: CACATCCATGTTCTCACCAC 

 52-57  X65214  141-173 

MM12  9  F: CAAGACAGGTGTTTCAATCT 
R: ATCGACTCTGGGGATGATGT 

 50-55  Z30343  101-145 

ETH225  9  F: GATCACCTTGCCACTATTTCCT 
R: ACATGACAGCCAGCTGCTACT 

 55-65  Z14043  131-159 

INRA037  10  F: GATCCTGCTTATATTTAACCAC 
R: AAAATTCCATGGAGAGAGAAAC 

 57-58  X71551  112-148 

CSRM60  10  F: AAGATGTGATCCAAGAGAGAGGCA 
R: AGGACCAGATCGTGAAAGGCATAG 

 55-65  …  79-115 

ILSTS005  10  F: GGAAGCAATGAAATCTATAGCC 
R: TGTTCTGTGAGTTTGTAAGC 

 54-58  L23481  176-194 

INRA032  11  F: AAACTGTATTCTCTAATAGCTAC 
R: GCAAGACATATCTCCATTCCTTT 

 55-58  X67823  160-204 

HEL13  11  F: TAAGGACTTGAGATAAGGAG 
R: CCATCTACCTCCATCTTAAC 

 52-57  X65207  178-200 

INRA005  12  F: CAATCTGCATGAAGTATAAATAT 
R: CTTCAGGCATACCCTACACC 

 55  X63793  135-149 

CSSM66  14  F: ACACAAATCCTTTCTGCCAGCTGA 
R: AATTTAATGCACTGAGGAGCTTGG 

 55-65  …  171-209 

SPS115  15  F: AAAGTGACACAACAGCTTCTCCAG 
R: AACGAGTGTCCTAGTTTGGCTGTG 

 55-60  FJ828564  234-258 

HEL1  15  F: CAACAGCTATTTAACAAGGA 
R: AGGCTACAGTCCATGGGATT 

 54-57  X65202  99-119 

INRA035  16  F: TTGTGCTTTATGACACTATCCG 
R: ATCCTTTGCAGCCTCCACATTG 

 55-60  X68049  100-124 

TGLA53  16  F: GCTTTCAGAAATAGTTTGCATTCA 
R: ATCTTCACATGATATTACAGCAGA 

 55  …  143-191 

ETH185  17  F: TGCATGGACAGAGCAGCCTGGC 
R: GCACCCCAACGAAAGCTCCCAG 

 58-67  Z14042  214-246 

TGLA227  18  F: CGAATTCCAAATCTGTTAATTTGCT 
R: ACAGACAGAAACTCAATGAAAGCA 

 55-56  …  75-105 

INRA063  18  F: ATTTGCACAAGCTAAATCTAACC 
R: AAACCACAGAAATGCTTGGAAG 

 55-58  X71507  167-189 

ETH3  19  F: GAACCTGCCTCTCCTGCATTGG 
R: ACTCTGCCTGTGGCCAAGTAGG 

 55-65  Z22744  103-133 

TGLA126  20  F: CTAATTTAGAATGAGAGAGGCTTCT 
R: TTGGTCTCTATTCTCTGAATATTCC 

 55-58  …  115-131 

TGLA122  21  F: CCCTCCTCCAGGTAAATCAGC 
R: AATCACATGGCAAATAAGTACATAC 

 55-58  …  136-184 

HEL5  21  F: GCAGGATCACTTGTTAGGGA 
R: AGACGTTAGTGTACATTAAC 

 52-57  X65204  145-171 

HAUT24  22  F: CTCTCTGCCTTTGTCCCTGT 
R: AATACACTTTAGGAGAAAAATA 

 52-55  X89250  104-158 

BM1818  23  F: AGCTGGGAATATAACCAAAGG 
R: AGTGCTTTCAAGGTCCATGC 

 56-60  G18391  248-278 

HAUT27  26  F: AACTGCTGAAATCTCCATCTTA 
R: TTTTATGTTCATTTTTTGACTGG 

 57  X89252  120-158 
 
Chr – chromosome; PS – primer sequence; AT – annealing temperature; GAN – GeneBank Accession 
Number; AR – allele range. 
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As given in Table 1, FAO-recommended microsatellite loci are located at 20 
different chromosomes making them useful to reveal genetic diversity across different 
genomic regions. Due to their advantages, microsatellites not only have been preferred 
for molecular genotyping in cattle [Demir and Balcioglu 2019] but also they were 
used to reveal genetic diversity in sheep [Ben Sassi-Zaidy et al. 2022], goats [Karsli 
et al. 2020a], chickens [Sabry et al. 2021] and pigs [Snegin et al. 2021] as well. Apart 
from genetic diversity, microsatellites have been applied for genome mapping [Ihara 
et al. 2004], parentage testing [Brenig and Schütz 2016], breed assignment [Jaiswal 
et al. 2016], conservation priority [González-Cano et al. 2022] in cattle populations.      

SNP arrays in detection of genetic diversity of cattle

SNP is defined as the simplest form of DNA variation such as transition or 
transversion occurring at a frequency of about one per 1.000 base pairs throughout the 
genome [Brookes 1999]. Several studies have shown that these simple mutations are 
significantly related to production [Ali et al. 2020], reproduction [Lu et al. 2021] and 
diseases [Soares et al. 2021] in cattle. Similar to microsatellites, they are randomly 
distributed in both coding and noncoding regions of the genome, while they can be 
detected via numerous molecular tools such as Allele Specific (AS) PCR, PCR-RFLP, 
sequencing etc. in which SNP arrays are commonly preferred due to higher accuracy 
and feasibility [Kleinman-Ruiz et al. 2016]. SNP arrays are also called microarray, 
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Fig. 2. Concept of genotyping based on SNP array.
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SNP chip and BeadChip which are used to genotype animals in terms of thousands of 
SNPs based on spots on the microarray corresponding to different alleles [Flanagan 
and Jones 2019]. Each spot creates different colour patterns based on the density 
of hybridized nucleotides which enables to record individuals as homozygous or 
heterozygous (Fig. 2). Today, several commercially produced SNP arrays with different 
densities are available for cattle genotyping in which develop by Illumina Inc., LD, 
SNP50 v.2 and HD are able to detect approximately 6.909, 54.609 and 777.962 SNPs 
in cattle, respectively [Nicolazzi et al. 2015]. Due to their abundance and randomly 
distribution in intron and exon regions across the genome, SNP arrays have been 
utilized to reveal genetic diversity within and between cattle breeds [Saravanan et 
al. 2020] together with parentage analysis [Hu et al. 2021], genes associated with 
economic traits [Raza et al. 2020], heat tolerance [Jia et al. 2019], selection signatures 
[Moravčíková et al. 2019], susceptibility/resistance to diseases [Zeb et al. 2020, Chai 
et al. 2021].

WGS in detection of genetic diversity of cattle

Sanger sequencing, also known as chain-termination method, is referred to the 
first generation sequencing by which nucleotide order of a given DNA fragment could 
be detected by chemical reaction process [Sanger et al. 1977]. Sanger sequencing 
has been mainly utilized in cattle to reveal genetic diversity in single locus [Bayıl 
Oğuzkan and Bozkurt 2019] as well as partial mtDNA region such as displacement 
loop [Granado et al. 2021]. Although, this method provides nucleotide discovery 
with high accuracy (99.9%) [Shendure and Ji 2008], it is not cost-effective and 
limited to sequence small part of the genome (approximately 1000 bp). However, 
second generation sequencing such as Next Generation Sequencing (NGS) based 
on parallel sequencing of massive DNA fragments are available to detect SNPs by 
screening large part of the genome (from exome to entire genome sequencing) with 
cost-effective manner in cattle breeds. In NGS studies, numerous library preparation 
methods such as Restriction-Site-Associated DNA Sequencing (RAD-seq) and 
Double Digest Restriction-Site-Associated DNA Sequencing (ddRAD-seq) together 
with variable sequencing platforms such as Illumina, Roche 454 and AB SOLiD 
enable scientist to genotype local cattle breeds [Vineeth et al. 2020, Mao et al. 2021]. 
Library preparation process and sequence platforms were comprehensively reviewed 
elsewhere by Hess et al. [2020] and Gatew and Tarekegn [2018], respectively. Briefly, 
genomic DNA libraries are created by DNA extraction, digestion, barcoding, indexing 
and cleaning steps followed by PCR amplification (Fig. 3). These libraries covering 
different individuals are sequenced simultaneously at single run by a suitable sequence 
platform. 

WGS tends to become popular due to advantages of NGS technologies. Breed-
specific SNPs and variants with low frequencies could be detected by assembling 
genomic data obtained by WGS with reference cattle genome [Zhang et al. 2019]. 
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Besides, indexing and barcoding process of NGS technologies allow to sequence 
whole genome of different individuals simultaneously at the same reaction which 
directly decreases economic burden of genotyping. Moreover, genomic data obtained 
from the entire genome not only increases accuracy of genetic diversity analysis but 
also enables scientists to conduct new statistical approaches such as copy number 
variations [Zhang 2020]. However, including more labour in laboratory practises as 
well as complex process of library preparation are one of the disadvantages of WGS 
in pre-sequencing steps [Zhao et al. 2020]. Additionally, raw data obtained from 
sequencer should be assembled to reference genome to detect SNPs and both SNPs 
and samples should be filtered by quality control process before downstream analyses 
via bioinformatic tools.

Comparison of microsatellite markers, SNP arrays  
and WGS in genetic diversity studies

Several criteria such as feasibility (time and labour efficiency) and accuracy may 
be considered to compare microsatellite and SNP data for genetic diversity analysis. In 
particular, obtaining SNP data is much easier than microsatellite data which requires 
PCR amplification and fragment analysis for each locus that are not feasible in terms 
of time and labour efficiency [Fernández et al. 2013].

On the other hand, SNPs are bi-allelic meaning that in theory, maximum 2 alleles 
and 3 genotypes could be detected at each SNP, whereas microsatellite loci are multi-
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Fig. 3. Main steps of WGS (https://irepertoire.com/ngs-overview-from-sample-to-sequencer-to-results/).
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allelic indicating that multi alleles and genotype combinations could be observed 
per each locus [Vignal et al. 2002]. For example, a total of 37 alleles were reported 
at ILSTS34 microsatellite locus in native Indian cattle breeds [Sharma et al. 2015]. 
Accordingly, Schopen et al. [2008] reported that for single microsatellite locus, 
three SNPs are required to achieve the same genetic information in cattle. However, 
microsatellite loci are less in number compared to SNPs across the cattle genome. In 
conservation genetics, evaluation of genetic diversity covering in as much of large 
part of the genome as possible is of vital importance to prioritize cattle populations 
[Karimi et al. 2016]. In this context, SNP data has advantages over microsatellite 
data, since genetic diversity may be estimated via millions of SNPs distributed across 
larger part of the genome. Indeed, screening larger part of genome for SNPs gives 
better results with higher accuracy to estimate genetic diversity in cattle populations 
[Bradbury et al. 2015]. 

Although, today, SNP arrays are commonly preferred to reveal genetic diversity 
in cattle populations due to their feasibility, they are produced to detect specific SNPs 
based on reference cattle breeds [Hou et al. 2012, De Donato et al. 2013]. This bias 
to reference cattle breeds hinders to detect unique SNPs in local cattle populations 
[Malik et al. 2018, Geibel et al. 2021]. It is known that local cattle populations contain 
beneficial mutations for specific environmental conditions. These mutations could not 
be detected by commercially available SNP arrays. On the other hand, developments 
in sequencing technologies enable scientists to re-sequence the whole genome of local 
cattle via NGS techniques such as Genotyping by Sequencing (GBS) and RADSeq 
[Malik et al. 2018, Wang et al. 2018]. These techniques are mainly based on enzymatic 
digestion, amplifying and partly sequencing cattle genome. These partially amplified 
sequences could be easily re-combined together according to update reference cattle 
genome to obtain SNPs across the genome. Whole genome resequencing makes it 
possible to observe unique SNPs which cannot be detected by SNP arrays.

Statistical analysis of genetic diversity via microsatellites and SNPs

In livestock including cattle, genetic diversity may be evaluated within and between 
populations. Statistical parameters such as number of alleles (Na), allele frequency, 
number of effective alleles (Ne), observed (HO) and expected heterozygosity (HE) are 
commonly used to reveal genetic diversity within cattle populations. Na indicates 
the total number of detected alleles per breed, whereas Ne refers to the number of 
alleles contributing to genetic variation in a given locus [Kimura and Crow 1964]. HO 
is the statistics of the frequency of total number of heterozygote individuals in terms 
of a certain loci, while HE, also known as gene diversity, defines the proportion of 
heterozygous genotypes in the context of Hardy-Weinberg equilibrium [Nei 1973]. 
Being Wright’s F statistics based on expected level of heterozygosity, FST and FIS are 
referred to genetic differentiation between subpopulations and level of inbreeding in 
subpopulations, respectively. Among them, Na and Ne are estimated by microsatellite 
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data, whereas HO, HE and FIS are calculated via both microsatellite and SNP data to 
reveal genetic diversity [Herráez et al. 2005, Uzzaman et al. 2014]. Besides, there 
are numerous clustering-based statistical approaches such as Principal Component 
Analyses (PCA), Neighbour-Joining (NJ) tree analysis, STRUCTURE analysis 
and Analysis of Molecular Variance (AMOVA) to reveal genetic structure of cattle 
populations via microsatellite and SNP data. By applying orthogonal transformation 
to reduce correlated variables into uncorrelated variables, PCA assigns the highest 
percentage of total variance to the first (PC1) and second (PC2) components [Fraga 
et al. 2016]. NJ method enables to create tree diagram via binary distance matrix at 
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 Table 2. Summary of some statistical softwares programs in genetic diversity 
 

Software Data 
Type Na Ne FIS HO HE FST  PCA NJ-

Tree Structure AMOVA Genetic 
distance Reference 

GenAlEx SSR and 
SNP + + + + + + +   + + 

Peakall and 
Smouse 
[2006] 

GDA SSR and 
SNP +  + + + +  +   + Lewis [2001] 

Popgene SSR + + + + + +  +   + Yeh et al. 
[1999] 

Power Marker SSR and 
SNP +       + + + + Liu et al. 

[2005] 

Cervus SSR and 
SNP +   + +       Kalinowski et 

al. [2007] 

Arlequin SSR and 
SNP + + + + + +    + + Excoffier et 

al. [2005] 

STRUCTURE SSR and 
SNP         +   Pritchard et al. 

[2000] 

Tassel SNP +   + +  + + +  + Bradbury et 
al. [2007] 

DARwin SSR and 
SNP +   + +  + +    

Perrier and 
Jacquemoud-
Collet [2006] 

PLINK SNP +   + +    +  + Purcell et al. 
[2007] 

TFPGA SSR +  + + + +     + Miller [2008] 

Genepop SSR and 
SNP +  + + + +     + Rousset 

[2008] 

NTSYSPC SSR and 
SNP       + +   + Rohlf [2002] 

DnaSP SNP +   + + +     + Rozas et al. 
[2017] 

MacClade SNP        +    
Maddison and 
Maddison 
[2000] 

PHYLIP SNP    + +   +   + Felsenstein 
[1989] 

FSTAT SSR + + + + + +      Goudet [1995] 

ADMIXTURE SNP       + +    Alexander and 
Lange [2011] 

MEGA SNP        +    Kumar et al. 
[2004] 

GENETIX SSR and 
SNP + + + + + + +    + Bonhomme et 

al. [1993] 
 
Na – number of alleles; Ne – number of effective alleles; FIS – inbreeding coefficient; HO – observed heterozygosity; HE 
– expected heterozygosity; FST – genetic differentiation coefficient, PCA – Principal Component Analysis; NJ-Tree – 
Neighbour Joining-Tree Analysis; AMOVA – Analysis of Molecular Variance. 
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individual and/or breed level.  STRUCTURE analysis detects differences between 
populations by placing each of the samples in groups sharing similar patterns of 
variation using a Bayes iterative algorithm [Porras-Hurtado 2013]. Additionally, 
AMOVA developed by Excoffier et. al [1992] which is frequently used in many 
molecular studies, is a hierarchical analysis of variance method which divides genetic 
diversity in terms of its components, allowing it to be determined between populations, 
between individuals within the population, and within individuals.

In general, populations with higher heterozygosity and lower inbreeding possess 
higher genetic diversity allowing them for developing adaptation to different 
production systems and environmental conditions. Moreover, by revealing genetic 
diversity, farmers can increase heterozygosity and decrease inbreeding values via 
suitable management practices [Demir and Balcioglu 2019].

Rapid advances in bioinformatics have given rise to numerous statistical software 
which enables to handle genetic diversity in cattle populations (Tab. 2). Possessing 
different user interfaces, data types of input and output, and operating platforms 
[Saravanan et al. 2019], these programs have facilitated to both manipulate and 
analyse different molecular data including microsatellites and SNPs. Several studies 
have focused on explaining the methodologies and statistical approaches of several 
analyses [Excoffier et al. 1992, Pritchard et al. 2000, Excoffier 2004, Ringnér 2008, 
Dogan and Dogan 2016]. Although, statistical softwares are many in numbers, some 
of them are summarised in Table 2. As seen, most of them allow for conducting 
multiple analyses, whereas some of them enable to conduct specific analysis such 
as STRUCTURE. Therefore, multiple platforms should be adopted to reveal genetic 
diversity in cattle populations. However, several programs support specific input and 
output files such as phylip, genepop, mega etc., which requires additional programs 
to convert data types for specific analysis. PGD Spider [Lischer and Excoffier 2012] 
and FORMATOMATIC [Manoukis 2007] are one of the useful tools to convert input 
data for different programs. 

Conclusion and perspectives

In this review, molecular identification of genetic diversity in cattle based on 
microsatellite and SNP markers as well as some statistical approaches and programs 
to handle these data were summarised.  Today, trend in decreased genetic diversity 
threatens both farmers for maintaining agricultural production and local cattle 
populations for developing adaptation against environmental conditions which 
will likely change in the future due to global warming. Particularly, conservation 
of variations in the genomic regions related to environmental adaptation will be 
of great importance in the future due to ongoing climate change.   The first step of 
conservation programs in local cattle populations is to reveal current genetic diversity. 
So far, microsatellite and SNP arrays have been used to reveal genetic diversity within 
and between populations. As mentioned above, they also have some disadvantages 
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and are unbiased for local cattle populations. Today, however, NGS technologies 
are promising to detect genetic diversity across the genome with higher accuracy 
compared to microsatellite and SNP array. It is believed that, NGS technologies will 
be cost effective and routinely be used for genetic diversity analysis in the close future.
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