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Genetic improvement of body weight (BW) traits has received major consideration in the poultry 
industry due to their economic and environmental implications. With the rapid implementation 
of genomic selection (GS) in the poultry industry and a decrease in the cost of genotyping, genomic 
prediction (GP) is a feasible way to increase productivity.  Moreover, a pre-selection of SNPs could 
represent a reasonable option to speed up GP. We used 312 F2  broiler chicken genotyped with 
60K Illumina Beadchip to investigate the effect of reduced SNP densities on accuracy and bias of 
prediction using single-step genomic BLUP (ssGBLUP) for BW at 2-4 weeks of age (488 chickens). 
To investigate the effect of reduced SNP densities by varying minor allele frequency (MAF), SNPs 
were grouped into five subgroups with MAF of 0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.5. The 
accuracy and bias of genomic predictions from different MAF bins were compared to that using 
a standard array of 60k SNP genotypes and the traditional BLUP method. Our study showed that 
using a subset of common SNPs genotypes may increase accuracy of genomic predictions compared 
to using all SNPs, specifically in the studied F2 population with a limited number of genotyped/
phenotyped individuals.
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 The uncertainty concerning the true genetic merit of breeding animals is the 
most important limitation in breeding programs. Investments in breeding programs 
are therefore often related to trait measurement, genetic evaluation methodology, and 
technologies to improve reproductive performance. Having a good measurement and 
more accurate genetic evaluation methodology could result in better identification 
of genetically superior animals, which leads to more accurate selection and greater 
genetic gain. 

Genomic selection (GS) – Meuwissen et al. [2001] and the availability of high-
density SNP panel creates an extraordinary opportunity to dissect the genetic basis of 
complex traits, especially for difficult or expensive-to-measure and/or low-heritability 
traits. Several studies have used single-step Genomic Best Linear Unbiased Prediction 
– ssGBLUP. [Legarra et al. 2009, Salek Ardestani et al. 2021] to estimate Genomic 
Breeding Values (GEBV) for livestock. The ssGBLUP combines the pedigree-based 
relationship matrix (A) with the genomic relationship matrix (G) into a hybrid matrix 
(H), which consequently could increase the accuracy, and the method reduces the 
prediction bias of GEBVs when compared to those generated from multi-step genomic 
predictions [Aguilar et al. 2011, Chen et al. 2011, Christensen et al. 2012, Simeone et 
al. 2012, Li et al. 2014, Song et al. 2017].

Theoretically, higher density SNP panels increase the likelihood that any 
quantitative traits loci (QTL) are in linkage disequilibrium (LD) with SNPs 
[Meuwissen et al. 2016]. Also using a high density SNP panel can lead to a relevant 
statistical and computational issue. Moreover, genotyping animals by medium to high 
density SNP panels will be costly in many livestock and poultry breeding programs. 
So, preselection of SNPs may provide a reasonable compromise between accuracy of 
results, the number of independent variables to be considered, computing requirements 
and genotyping cost [Meuwissen and Goddard 2010, Druet et al. 2014, MacLeod et 
al. 2014].

In the current study, genomic breeding values were estimated using ssGBLUP 
methodology for body weight at 2-4 weeks of age on a set of 312 F2 broiler chicken 
using whole SNP data and 5 different subsets of SNPs with MAF bins of 0.05-0.1, 0.1-
0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.5. Also, GEBVs were compared with BVs estimated 
from a traditional BLUP method. 

Material and methods

Experimental population 

The F1 population was generated by applying reciprocal crosses between a 
commercial fast-growing broiler strain (Arian line, A) and a slow-growing indigenous 
population (Urmia Iranian native chickens, N). Each F1 male, resulting from a reciprocal 
cross, mated with four to eight females from the other families. Finally, a total of 488 
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F2 chickens from eight half-sib families were generated in five different hatches. Day-
old F2 chickens were weighed and reared on the floor for 7 days under 24h light and a 
brooding temperature of 33°C. This temperature was decreased to 30°C on day 7. On 
day 8, birds were weighed and moved to individual cages with a temperature of 30°C, 
which was gradually decreased to reach a final temperature of 22°C, and a 22h light and 
2h dark cycle throughout the experimental period. Chickens did not receive vaccines 
during the rearing period. Feed and water were provided ad libitum. 

Genotyping and Population structure

DNA was extracted from 312 blood samples by the standard salting-out procedure. 
All samples were genotyped at Aarhus University, Denmark, using the Illumina 
Chicken 60K BeadChip provided by Cobb Vantress (312 chickens with specific 
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 Supplementary Table 1. Distribution of SNPs before and after quality control and 
the average distance between adjacent SNPs on each 
chromosome. 

Average distance 
(kb)

 
No. of SNP in chip

 No. of SNP 
Markers after 
quality control

 
Chromosome

26.5  8303  7546  1 
26.7  6355  5762  2 
26.3  4739  4340  3 
26.5  3872  3553  4 
27.1  2542  2303  5 
19.6  1995  1815  6 
20.1  2089  1907  7 
20.1  1636  1502  8 
18.8  1366  1269  9 
16.1  1553  1378  10 
16.4  1531  1329  11 
14.4  1559  1356  12 
14.6  1371  1251  13 
14.3  1179  1081  14 
11.8  1222  1094  15 
21.7  24  20  16 
11.8  994  898  17 
11.9  1048  930  18 
11.3  973  878  19 

8.8  1815  1587  20 
8.5  901  805  21 

12.6  432  313  22 
9.3  724  631  23 
8.5  853  763  24 

11.5  211  177  25 
7.4  776  685  26 
9.4  576  518  27 
7.6  708  582  28 
7.7  142  118  29 
6.9  7  4  30 

37.5  2842  1984  Z 
15.8  54338  48379  Total 
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genotype and 176 chickens without genotypes). Quality control was performed using 
PLINK (v1.9) – Chang et al. [2015] and Purcell et al. [2007]. SNPs with a MAF 
threshold below 5% and SNPs with a call rate below 95% were removed. The Hardy-
Weinberg equilibrium threshold of 1×10−6 was also applied. Moreover, samples with 
high missing genotype rates (<99.9%) were discarded. After quality control, the final 
dataset contains 48,379 SNPs and 308 birds, including 170 male and 138 female. The 
number of SNPs before and after quality control and the average distance between 
adjacent SNPs on each chromosome, determined using synbreed [Wimmer et al. 
2012], are given in Supplementary Table 1. The normality of the data after quality 
control was checked and confirmed using QQ-plot in R (Supplementary Fig. 1). 

H. Asadollahi et al. 

To study the relationship between allele frequencies and predictive abilities, 
48,379 SNPs were grouped into 5 subsets with MAF bins of 0.05-0.1 (6,731 SNPs), 
0.1-0.2 (8,884 SNPs), 0.2-0.3 (10,148 SNPs), 0.3-0.4 (11,128 SNPs) and 0.4-0.5 
(11,488 SNPs) using PLINK (v1.09) – Chang et al. 2015 and Purcell et al. [2007].

The population structure was evaluated by multi-dimensional scaling (MDS) 
using PLINK (v1.09) – Chang et al. [2015]. Independent SNPs were obtained for 
all autosomes using the independence-pairwise option, with a window size of 30 
SNPs, a step of five SNPs and an r2 threshold of 0.2, as suggested by Wang et al. 
[2009]. Then, independent SNPs were used to estimate the pairwise identity-by-state 
(IBS) relationship between all individuals [Liu et al. [2015]. MDS components were 
obtained using the MDS-plot option based on the IBS matrix [Sun et al. 2013]. Cluster 
analysis was conducted for all genotypes based on genetic distance according to the 
neighbour joining method using agglomerative clustering and Tassel software [Luo et 
al. 2020, Bradbury et al. 2007].

Statistical analyses

Model 1 was used to estimate breeding values of each animal using the 
AIREMLF90 (v1.61) module from the Blupf90 program [Misztal et al. 2002]: 

                                  y = 1μ + Xb + Za + e                     
where: y – the vector of raw phenotypes; μ – the overall mean; X – the incidence 
matrix relating fixed effects of sex-hatch-year to phenotypes; b – the vector of fixed 

 
Supplementary Figure 1. Quantile-Quantile plot representation obtained from 48379 studied SNPs for the 
body weight trait.
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effects; Z – the incidence matrix relating phenotypes to additive genetic effects; a is 
the vector of additive genetic effects assumed to be distributed as ∼ N (0, Aσa

2), where 
A is the pedigree-based relationship matrix, σa

2 is the variance of additive genetic 
effects and e is the vector of random residual effects as ∼N (0, Iσe

2), where I is the 
identity matrix, and σe

2 is the residual variance. Adjusted phenotypes were calculated 
as the sum of the animals’ EBV and residual values [Lourenco et al. 2020].

Model 2 was used to estimate single-step genomic breeding values using 
AIREMLF90 (v1.61) – Misztal et al. [2014] with 48,379 SNPs or a different subset of 
SNPs with MAF bins of 0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.5:

                                     y = 1μ + Xb + Zg + e                    
where y, μ, X, b, and e are the same as Model 1, Z is the incidence matrix for random 
additive genetic effects; g is a vector of random additive genetic effects assumed to 
be distributed as ∼N(0, H), where H is a combination of genomic relationship matrix 
(G) and pedigree-based relationship matrix (A). The inverse of the H matrix used in 
this study was created as:
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Improvement accuracy =  (accuracy of GEBV−accuracy of EBV
accuracy of EBV ) × 100   

 

 

where A22 is the subset of the A matrix related to genotyped animals, t and ω are the 
scaling factors, which both were set equal to one as the default option in AIREMLF90 
(v1.61) – Misztal et al. [2014]. To avoid singularity problems and improve predictions, 
the blending factors of α and β were set at 0.95 and 0.05, respectively [VanRaden 
2007, Lourenco et al. 2014, Salek Ardestani et al. 2021]. 

The accuracy was calculated as the correlation between breeding values (GEBVs/ 
EBVs) and adjusted phenotypes of birds in the validation population. The standard 
error of prediction accuracy was calculated using the following equation [Salek 
Ardestani et al. 2021]:

𝐻𝐻−1 = 𝐴𝐴−1 + [0 0
0 𝑡𝑡(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐴𝐴22)−1 − 𝜔𝜔𝐴𝐴22

−1] 

 

Standard error =  1 − accuracy2

√number of individuals − 1
 

   The accuracy improvement was calculated using the following equation [Salek 
Ardestani et al. 2021]:

The bias of prediction was calculated as the regression coefficients (r) of GEBVs 
on the adjusted phenotype using the lm function in R 4.0.2 (R Core Team. 2013).

Cross validations for model assessment

To assess predictive performance of different prediction models, we used the 
5-fold cross-validation (CV) method. Out of all 308 birds, 40 birds were randomly 
selected as the validation population and the other (268) birds were considered as the 
reference population. This was done in 5 replications. GEBVs in the validation set 
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were estimated using the ssGBLUP method and different SNP densities. Furthermore, 
traditional breeding values were estimated using the BLUP method for different age 
groups. The accuracy and bias of GEBVs/EBVs were used to compare the predictive 
ability of different scenarios.

Results and discussion

Summary statistics and population structure

Traits, the mean and standard deviation, coefficient of variation, and the minimum 
and maximum values of BW at weeks 2 to 4 are given in Table 1. To explore the 
genetic population structure, we performed MDS and neighbor-joining tree using 
48,379 SNPs in the crossbreed population (Fig. 1 and 2). Our findings revealed the 
existence of eight subgroups in the studied population. The kinship matrix was used 
to correct population stratification.

H. Asadollahi et al. 

 
Table 1. Descriptive statistics of body weight traits in F2 chickens 
 

Trait  Mean  SD  CV  Minimum  Maximum 
BW2  92.3  18.8  20.35  41.20  135 
BW3  218.8  61.2  27.96  68.55  325 
BW4  419.1  102.4  24.45  157.30  651 

 
BW2, BW3, BW4 – body weight at 2, 3 at 4 weeks of age, respectively; SD – 
standard deviation; CV – coefficient of variation. 
 

Fig. 1. Population structure identification with multidimensional scaling analysis. Fullsib families are 
shown in the same color (HSF = half-sibling family).

 

Predictive ability

The accuracy of EBV (GEBV) for BW at 2 to 4 weeks of age were 0.166 (0.264), 
0.054 (0.173), and 0.215 (0.216), respectively (Tab. 2). The highest and lowest 
accuracy improvement in ssGBLUP over BLUP were observed for 3 (220.37%) and 
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4 (0.46%) weeks of age, respectively. The lowest bias of genomic predictions (0.89) 
using the ssGBLUP model was observed for BW at 3 weeks of age (Tab. 2).

The accuracy of genomic prediction for each trait based on different SNP subsets 
is shown in Figure 3. We used the ssGBLUP scenario (60k) and traditional BLUP here 
as the benchmark. 

For BW at week 2, the highest accuracy (0.273) and the lowest bias of estimates 
(r =1.08) were observed for MAF bin 0.1-0.2, which resulted in 5.42% improvement 
compared to using all SNPs (Tab. 3). However, for BW at 3 weeks of age, using MAF 
bin of 0.4-0.5 resulted in the highest accuracy improvement (16.6%) and the lowest 
bias of estimates (r =0.9) – Table 4.  For BW at 4 weeks of age, MAF bins of 0.3-0.4 
(0.234) and 0.4-0.5 (0.229) showed the highest accuracy of prediction, respectively 
(Tab. 5). Figures 3 shows a comparison between the accuracy of the evaluation of each 
subgroup of markers and the accuracy of the evaluation of information concerning all 
markers in weeks 2 to 4, respectively. The average ssGBLUP (60k) and BLUP accuracy 

Genomic evaluation of body weight in chickens

 
Fig. 2. Genetic relationships among 8 chicken groups constructed using a neighbor-joining phylogenetic 
tree from shared allele distance, based on 48,379 single nucleotide polymorphisms (SNPs).

 
Table 2. Accuracy and bias of BLUP and ssGBLUP predictions for broiler body weight in different weeks 

using 5-fold cross-validation method 
 

Weeks  Accuracy / BLUP  Accuracy / ssGBLUP  Improvement 
accuracy% / ssGBLUP 

 Regression 
coefficient / ssGBLUP 

2  0.166 (0.042)  0.264 (0.044)  59.03  1.3 
3  0.054 (0.045)  0.173 (0.043)  220.37  0.89 
4  0.215 (0.043)  0.216 (0.043)  0.46  0.74 

 
 



130

H. Asadollahi et al. 

 
Fig. 3. Compare the accuracy of each MAF subgroup with the accuracy of information about all markers 
in the second to fourth weeks.

 
Table 4. Accuracy and bias of genomic prediction of body weight traits using different MAF bins at three weeks 

of age 
 

MAF  Accuracy / ssGBLUP  Improvement 
accuracy% / ssGBLUP 

 Improvements  
for each MAF % 

 Regression 
coefficient / ssGBLUP 

0.05-0.1  0.149 (0.044)  175.92  -44.45  0.81 
0.1-0.2  0.170 (0.044)  214.81  -5.56  0.92 
0.2-0.3  0.159 (0.044)  194.44  -25.93  0.86 
0.3-0.4  0.170 (0.044)  214.81  -5.56  0.86 
0.4-0.5  0.182 (0.043)  237.03  16.66  0.90 

 
 

 
Table 3. Accuracy and bias of genomic prediction of body weight traits using different MAF bins at two weeks 

of age 
 

MAF  Accuracy / ssGBLUP  Improvement 
accuracy% / ssGBLUP 

 Improvements  
for each MAF % 

 Regression 
coefficient / ssGBLUP 

0.05-0.1  0.265 (0.042)  59.63  0.6  1.32 
0.1-0.2  0.273 (0.041)  64.45  5.42  1.08 
0.2-0.3  0.259 (0.042)  56.02  -3.01  1.8 
0.3-0.4  0.259 (0.042)  56.02  -3.01  1.6 
0.4-0.5  0.265 (0.042)  59.63  0.6  1.6 

 
 

 1 Table 5. Accuracy and bias of genomic prediction of body weight traits using different MAF bins at four weeks 
of age 

 

MAF  Accuracy / ssGBLUP  Improvement 
accuracy% / ssGBLUP 

 Improvements  
for each MAF % 

 Regression 
coefficient / ssGBLUP 

0.05-0.1  0.179 (0.043)  -16.74  -17.2  0.64 
0.1-0.2  0.199 (0.043)  -7.44  -7.9  0.73 
0.2-0.3  0.188 (0.043)  -12.55  -13.01  0.70 
0.3-0.4  0.234 (0.043)  8.83  8.37  0.77 
0.4-0.5  0.229 (0.042)  6.51  6.05  0.79 
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across all the traits were 0.217 and 0.145, respectively. The average accuracy based 
on the SNPs with MAF bin of 0.3-0.4 and 0.4-0.5 across all the traits was slightly 
increased relative to ssGBLUP (60k) – 0.221 and 0.225, respectively. However, using 
the ssGBLUP method and a subset of SNPs with MAF bins of 0.05-0.1, 0.1-0.2 or 0.2-
0.3, resulted in a slightly lower average prediction accuracy across traits compared to 
ssGBLUP (60k) – 0.197, 0.214 and 0.202, respectively (Fig. 4). Figure 5 confirmed 
the MAF 0.4-0.5 advantage in different weeks.

Genomic evaluation of body weight in chickens

 
Fig. 4. Compare the average accuracy across all traits of each MAF subgroup with the accuracy of 
information about all markers.

 

Fig. 5. Improvement for each MAF in the second to fourth weeks.
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Obtaining an accurate and unbiased genomic prediction can be a profitable strategy 
for genetic improvement of economic traits in livestock and poultry industries [Mrode 
et al. 2019]. Our studies provided some valuable insights into applying genomic 
selection with low-density markers in an F2 cross broiler population. It is generally 
expected that a high proportion of genetic diversity may be explained by the high-
density panels used, but given that most of the SNPs in the high-density SNP panel 
are in linkage disequilibrium (LD) with causal mutations, increasing the number of 
markers may not result in a significant accuracy improvement in genomic evaluation 
of a population with a single-breed reference population [Su et al. 2012, Zhang et 
al. 2018). Also, using a high density SNP panel can lead to a relevant statistical and 
computational issue. Moreover, genotyping animals by medium to high density SNP 
panels will be costly in many livestock and poultry breeding programs. So, pre-
selection and using a subset of SNPs may provide a reasonable compromise between 
accuracy of results, the number of independent variables to be considered, computing 
requirements and genotyping cost [Meuwissen and Goddard 2010, Druet et al. 2014, 
MacLeod et al. 2014]. In the present study, we investigated the effect of reduced 
SNP densities by varying minor allele frequency for BW at 2-4 weeks of age in a 
small F2 chicken population. The results showed that the use of SNPs with MAF 
bin of 0.4-0.5 can result in a slight improvement of accuracy of prediction compared 
to those generated from all genotype data or using traditional BLUP (Fig. 4 and 5). 
Consistently with our results, several studies showed that using the subset of SNPs 
can provide even better results than using all SNP information [Habier et al. 2009, 
Rolf et al. 2010, Wellmann et al. 2013, Ogawa et al. 2014, Li et al. 2018, Salvian et 
al. 2020].

Here we used the ssGBLUP using a 60k SNP array and traditional BLUP as the 
benchmark. As expected, using a combination of pedigree and genomic information 
resulted in more accurate estimates of genetic merit compared to using pedigree 
information alone. Generally, ssGBLUP generated on average higher prediction 
accuracy than traditional BLUP even when a subset of SNPs were used (Fig. 4). 
In agreement with current results, Salek Ardestani et al. [2021] found the highest 
prediction accuracy using ssGBLUP in comparison with the BLUP, GBLUP, BayesC, 
and BayesCπ methods for the medium-size genotyped Canadian pig population. Silva 
et al. [2016] showed the higher accuracy when ssGBLUP was used compared to using 
the BayesCπ and GBLUP methods for residual feed intake and feed conversion ratio 
traits in Nelore cattle. Yan et al. [2017] reported a lower bias of estimates and higher 
accuracy of predictions using ssGBLUP compared to traditional BLUP for a pure line 
of laying hens. 

Due to the small reference population size used in the current study and the 
architecture of the BW traits, which is polygenic [Clark et al. 2011], the rate of 
improvement over BLUP was not noticeable. Given the relatively low to moderate 
heritability of BW at different weeks of age [Mignon-Grasteau et al. 1999, Adeyinka 
et al. 2006, Mebratie et al. 2017], a large number of records in the reference population 
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is required to achieve high GEBV accuracy [Goddard and Hayes. 2009, Bermann et 
al. 2021]. In addition, the presence of false positive errors in real data can also be 
responsible for small accuracy improvement compared to BLUP [VanRaden et al. 
2017]. Besides, when a small effective population is selected over a long period of 
time, most of the genetic variance can be explained by the genetic variance of SNPs 
due to the relationship between individuals [VanRaden et al. 2009] and therefore, 
significant gains in prediction accuracy will not be achieved [MacLeod et al. 2014]. 
In consistence with the current results, for BW traits in a Yorkshire population of 592 
pigs Song et al. [2019] reported a small accuracy improvement (1%) using ssGBLUP 
compared to BLUP, which could be explained by the small number of animals with 
genotype and phenotype information and a low pedigree depth. They also showed 
accuracy improvement by increasing the reference population size [Song et al. 2019]. 
Lourenco et al. [2014] also reported 3% higher accuracy of prediction for ssGBLUP 
compared to BLUP for fat percentage in a relatively small population of dairy cows 
with genotype.

In the current study the improvement in accuracy of genomic prediction using 
ssGBLUP compared to BLUP was noticeable at 2 and 3 weeks of age (59% and 
220%, respectively), which could be due to the higher genetic correlation of adjusted 
phenotypes and GEBVs than EBVs for these age groups. Generally, the stronger 
the genetic correlation between GEBVs and the adjusted phenotypes, the greater 
the accuracy of genomic prediction. The degree of genetic correlation between the 
adjusted phenotype and EBVs for BW at 3 and 2 weeks of age were increased by 
0.119 and 0.098 using ssGBLUP compared to the BLUP method. However, small 
improvement was observed for BW at 4 weeks of age, which could be due to the 
relatively small increase in genetic correlation between adjusted phenotypes and EBVs 
using ssGBLUP over BLUP (0.001). Based on the current results, implementation of 
genomic evaluation based on the ssGBLUP method using whole SNPs for BW at two 
weeks of age can result in more accurate results in populations with a similar structure.

Conclusion

The body weight trait is one of the main breeding objectives in chicken breeding, 
but research focusing on the best age to implement genomic breeding values is limited. 
In the current study we investigated the accuracy and bias of genomic prediction 
across different age groups, 2-4 weeks of age in the F2 broiler population using the 
5-fold cross-validation method based on the ssGBLUP method. Moreover, a different 
subset of SNPs varying in minor allele frequency were used for genomic predictions 
using the ssGBLUP method. Generally, SNPs with MAF bin of 0.4-0.5 had a higher 
predictive ability compared to other MAF bins for most of the age groups. However, 
one of the limitations of the current study is that a small population size was used for 
genomic prediction and so further studies are needed to confirm the current results. 

Genomic evaluation of body weight in chickens
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