Animal Science Papers and Reports vol. 23 (2005) no. 3, 159-169 Institute of Genetics and Animal Breeding, Jastrzębiec, Poland

Gene expression profiling of mouse mammary gland: transition from pregnancy to lactation*

Tadeusz Malewski¹, Stanisław Kamiński², Lech Zwierzchowski¹

- ¹ Polish Academy of Sciences Institute of Genetics and Animal Breeding, Jastrzębiec, 05-552 Wólka Kosowska, Poland
- ² Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland

(Received June 10; accepted September 19, 2005)

Gene expression analysis comparing pregnant and lactating mouse mammary gland was performed with Mouse Panorama Apoptosis cDNA macroarray containing 243 genes. Transition from pregnancy to lactation led to repression of 15 and induction of 24 genes, while 12 genes were found to change their expression more then twice. Expression of 16 genes was shown, not described so far in the mammary gland of mouse. Simultaneous analysis of 243 genes made it possible to begin arranging them into the gene regulation network of the mammary gland.

KEY WORDS: mouse / mammary gland / gene expression / cDNA macroarray

Unlike most mammalian organs, which develop primarily during embryonic and foetal stages, development of the mammary gland occurs also in the postpubertal period. There are six defined stages involved in development of the mammary gland including: foetal, prepubertal, pubertal, pregnancy, lactation and involution. These stages can be characterized further as a series of highly orchestrated transitions, or switches, in which critical developmental decisions are made concerning cell differentiation, pattern formation and cell function. Each of these stages involves a complex interaction of hormones, growth factors, and signal transduction pathways, leading to expression of

^{*}Supported by the Ministry of Scientific Research and Information Technology, grant No. 3 P06D 017 23 and NATO Collaborative Linkage Grant LST.CLG 979802.

developmentally regulated genes [Cunha and Hom 1996, Medina 1996, Visvader and Lindeman 2003].

Near midpregnancy, the alveolar epithelium acquires the capacity to produce milk proteins (the stage I transition of lactogenesis) but secretory function is inhibited. At parturition, inhibition of secretory function is released and these cells begin to secrete large volumes of milk (the stage II transition of lactogenesis). Milk protein gene expression has been investigated by numerous authors [Marti *et al.* 1999, Rosen *et al.* 1999, Rijnkels 2002]. There is, however, no comprehensive analysis of other genes expression during transition from pregnancy to lactation.

Microarray analysis has had a major impact on our understanding of the transcriptional basis of complex biological systems. The few microarray studies of normal mouse mammary gland have either focused on early stages in the developmental cycle [Master *et al.* 2002, Visvader and Lindeman 2003] or have used the mammary data to illustrate methods of data analysis [Lemkin *et al.* 2000, Phang *et al.* 2003]. One of our longterm goals is to elucidate genes and pathways associated with lactation. To begin, we compared gene expression profiles of lactating mouse mammary tissue *versus* pregnant on Panorama macroarray. In the present study we applied a macroarray approach to study the transcriptional expression of 243 mouse genes in a mammary gland during transition from pregnancy to lactation.

Material and methods

Animals and tissues

Mammary glands of MIIZ mice on day 16 of pregnancy and day 1 of lactation were used. Mammary gland samples were excised immediately after cervical dislocation. Mammary tissues were cleared from most adjacent muscles, fat and connective tissues, frozen at -25°C and stored at -75°C until use.

RNA extraction

Total RNA from frozen tissues was extracted with TRI Reagent (SIGMA-ALDRICH, Inc.) according to the manufacturer protocol. Briefly, up to 100 mg of frozen tissue was homogenized in 1 ml of TRI Reagent. Next, 0.2 ml of chloroform was added, shacked vigorously and incubated 15 min. at room temperature. The mixture obtained was centrifuged at 12 000 g for 15 min. at 4°C. Aqueous phase was collected, and transferred into fresh tube. Isopropanol (0.5 ml per ml of TRI Reagent) was added and the mixture was incubated for 10 min. at room temperature. It was then precipitated and RNA pellet washed with 75% ethanol. In order to quantify the amount of total RNA extracted, the optical density was determined with DU-68 Spectrophotometer (BECKMAN, Inc.). RNA integrity was electrophoretically verified on agarose gel stained with 0.5 μ g/ml ethidium bromide.

cDNA macroarray

Synthesis of labelled cDNA. For cDNA synthesis equal amounts of RNA extracted from five 16-days pregnant or 1-day lactating mice were pooled. To confirm the validity of the assay, cDNA synthesis was performed in duplicate. The cDNA labelling reactions were performed in two steps according to the manufacturer's protocol. In the first step Mouse Apoptosis Labelling Primers were annealed to RNA template. Then, the reverse transcriptase was added to initiate cDNA synthesis reaction (Panorama Mouse Apoptosis cDNA Labelling and Hybridisation Kit). To 2 μ g of total RNA added were 4 μ l Mouse Apoptosis cDNA labelling primers, and water to 14.5 μ l final volume. RNA was denatured at 90°C 2 min. and Mouse Apoptosis cDNA primers were annealed to RNA template for 20 min. at 42°C. After annealing, reverse transcriptase buffer, dATP, dGTP and dTTP to final concentration of 333 mM, 20 U ribonuclease inhibitor, 50 U reverse transcriptase, and 40 μ Ci[α -³²P]dCTP were added. Reaction mixture was incubated at 42°C for 3 h. The unincorporated radiolabelled nucleotide was removed from labelled cDNA by purification over Sephadex G-25 gel-filtration column according to manufacturer instructions.

Hybridization and analysis of array. Nylon array (Panorama Mouse Apoptosis Gene Arrays, Sigma-Genosys, The Woodlands, TX) was rinsed in 50 ml 2×SSPE at room temperature for 5 min, and pre-hybridized in 5 ml of hybridization solution for 1 h at 65°C. Labelled probes were denatured at 90°C for 10 min and added to 3 ml of hybridization solution. Probes were hybridized to a nylon array at 65°C overnight. After hybridization, the nylon membranes were washed three times for 2-3 min at room temperature with 50 ml $0.5 \times SSPE + 1\%$ sodium dodecyl sulphate (SDS), and twice with 50 ml $0.5 \times$ SSPE + 1% SDS at 65°C for 20 min. On the next step, membranes were washed once with 50 ml 0.1×SSPE + 1% SDS at 65°C for 20 min., and then exposed to Phosphorscreen (KODAK, Japan) for 24 hours. The screens were scanned by Bio-Rad FX Scanner at a maximum resolution of 25 µm. Results from three independent hybridizations were obtained for each probe. Images were analysed by Quantity One (BioRad) software. Each image was overlaid with grids so that signal intensities of individual spots could be assessed. Local background for each membrane was calculated on the basis of 10 positions with no DNA spotted area. Expression levels of individual genes are represented in arbitrary units after subtracting background. Intensity-based global normalization was then performed.

Results and discussion

Macroarrayas provide a powerful tool for analysing complex biological systems because they can extract patterns of gene expression from a significant proportion of the total genomic content of an organism. In this study we simultaneously analysed 243 transcripts to determine basic expression patterns in adult mammary gland during the transition from pregnancy to lactation. Autoradiographs of arrays hybridized with [³²P-cDNA] from 16 day of pregnancy and 1 day of lactation are presented in Photo

T. Malewski et al.

Photo 1. DNA array hybridization of 16 day pregnant (A) and 1 day lactating mice (B). Hybridizations were performed using radioactive ³²P-labelled probes prepared from pregnant and lactating mice mammary gland of five animals each. Selected genes changing expression during transition from pregnancy to lactation are indicated.

162

1-A and 1-B. Gene expression signals were quantified by Quantity One software (Bio-Rad). Analysis of these data show that during transition from pregnancy to lactation 15 genes were repressed (Tab. 1), 24 genes induced (Tab. 2), and expression of 12 genes changed more than twice (Tab. 3). Macroarray analysis confirmed the previously described expression of several genes in the mammary gland: IGF1 and IGF2 receptor [Boutinaud *et al.* 2004], PTEN [Moorehead *et al.* 2003], and transforming growth factor beta [Ewan *et al.* 2002].

Moreover, the analysis found 16 genes expression of which has not yet been de-

Gene Bank	UniGene	UniGene Abhn- Gene name viation		Onto genic also ification
AF141322	Mn31915	Carl	Cansolin 2	Apopteri- nand factor
NM_008140	Mm1090	Gpπ	Ghutathione peromitase l	Apopteż- naktał fietor
NM_010354	Mm.21109	Gen	Gekolin	Apopteris- minimi factor
NM_010447	Mm.17917	Hapsl	Hataro ganao wa nuclaan mbonuu ko protain Al	Apopteris- minimi factor
NM_019682	Mm.29908	Inskl	Dynain, cytoplasmic, light chain l	Apopteris- minimi factor
NM_009383	Mm.242072	<u>Fiall</u>	Cytotomic granula-associated R.NA-binding potein-like l	Apopteris- naland factor
AB041997	Mm18748	Ptø	Prostaglandin E synthase	Apopteri- mlated factor
NM_011143	Mm311918	Pula	Double stranded R.NA-dependent protein hinase	Apopteris- minimi factor
AB017337	Mm.278701	îndî.	Starl z gulatory element binding protein-l	Apopteris- minimi factor
NM_010849	<u>Mm2444</u>	Шус	Myab <i>ayi</i> omatoris onco gna	Celloyale ne gulatane
004710	Mm.24553	lgf7r	Inculin-like growth factor 2 marphr	Cytoking and mapping
AA013199	Mm22541	Iradd	INFELA-associated uis death domain protein	Signal trans duran
NM_009734	Mm.488	Bagl	Bal2-associated athano game 1	Mitochondrial- se sociated proteine
NM_011738	Mm.332314	Walah	Tyrosina 3-monoonyyanasa/ typtophan 3-monoonyyanasa activation protain, ata pohypaptida	Signal trans d'une s
NM_008940	<u>Mm.245395</u>	Pan	Phosphatace and tensin homolog	Signal tran: dump

163

Table 1. Gener induced in lacence.

Gime Benk	Unitions	Abbre-	Cons Name	Onegene chandemon
204 00700	Advance 5		Dista Burramana, Barra	accessed and
144 Coortex			aight adame-bic officier A	Rana
264_00LSD	Atta i vita	246	Mailation 1	Apopose-relaxed
			8	
veer_ooutin	AND TOUT	ND31	inand-auction change	Арарын манса Пилат
New_DOLTH	Whe SODE	Pdad (Pagranena dadi shah i	Apopus erdand Russe
204_008799	Ats 111	Pdafi.	Pagement dedictath1	Apopose e-relate d Record
200 001210	Xin 190		Cupaci	Cupace addor regulació
Nev1_009419	ate 1341	BRE3	BIRES Beculiving LAP	Cupers addor
200_009dLT	Atta 101	A001	Agun n chugen na dinac andreas is as	Cti tyt rgiusa
AP011161	What = 6 🖻	501	Transcription Report Sp I	Ciliyek ngilasa
2941 002900	àthr - 189	Conel.	Extend	College reviews
UTIDA	WW 19980	-72-61	- [3 v]	Cyndine ad
				napan
VENTO THAT	Mrs 111Di		Envelunce geoffell	Cycline and
764_DIDST	Xev 11101	l•n.	incritains ranges, sight	Cycline and
244_0083+8	Xtv 1664	i i Dra.	Institution (Drasspar, sight,	Cycline and
New_contro	Atta 1157-		Colory served ang Base I	Cyskins and
			n a par	napen
New_DITIST	X1x 1-010	TERNI	Transformeng growth fluxor, board	Cycline and
DIEMI	Wine 1901	Тутаї	TYRCI procini șmanc	Cytoking and
			hings 1	
264_008480	Whe 65%	Wig165	Magen azwardigezen konarekonar konar 5	Signi conducts
264_0109-5	atin 1059	24mmm.P	Nound spherosystems: activation same actification	Signal constant of
APOLLOID	2010 1TEAS	in the t	inheber of legge Sciences form	Signal constant of
New_DOBLASS	Atte 1140	Caddy 36	Envelopment and DNA- deneurs industrial #5 box.	Signal considers of
556660	Max managed	Ant	Renor and rud our	Send module #
	<u>ym</u>		remper softmebes 1	
Perio_Perio_Perio	Min 144191	Turk	TRAP funcily or on bor- name aux d'AFA appa, B ar a sa cre	Signal constants
204 000047	Select and DA	Terell	Telessere en en se busele -	Telescone av la sed
14 CONCT		16111	Rune I	Durania

164

Ratio	Gene Bank	UniGene	Abbm- viation	Gene Name	Onto ganic classification	
5,64	NM_007470	Mm.8924	Cdlin2b	Cyslin-dependenthins e inhibitor 2B	Celloyale mgalaten	
3,96	AF117340	Mm15918	Мар311	Mito gan activated partain. binare binare binare l	Signal tans dum s	
3,39	NM_007778	Mm.795	Cfl	Colonys timulatin g factor l	Cytokines and mampions	
2,95	NM_008594	Mm.1451	Mfys8	Milli fat globula-EGF factor 8 paotain	Apoptoris-mlated factors	
2,69	NM_007891	<u>Mm18036</u>	Eff	E2Ftanscription factor1	Signal transducer	
2,14	NM_010512	Mm.248521	fåg	Inculin-like go with factor l	Cytokines and memptons	
0,49	NM_009983	Mm.231395	Cad	CaffeprinD	Apoptoris-mlated factors	
0,47	NM 010784	Mm 22470	Mdm2	C all double minute 2	Calleysia myulatan	
0,45	\$6683	Not Seigned, yet	CREB	CREB-binding protein	Celleyah nguluwu	
0,34	L08235	Mm.200408	Ch	C hatain.	Apoptosis-mlated factors	
0,28	AFI19383	<u>Mm.</u> 28835	Baff	Ballactivating factor	INFequentianily	
0,21	NM_011440	Mm1275	īm.	Thiomdowin	Apoptosis- mlated factors	

Table 3. Changes of game transcription activity during transition from pregnancy to lastation.

scribed in the mammary gland:

- heterogeneous nuclear riboprotein A1;
- light chain 1 of dynein;
- Tial1, cytototoxic granule-associated RNA-binding protein 1;
- double stranded RNA-dependent protein kinase;
- TNFR1a-associated via death domain protein;
- Bcl2-associated athanogene 1;
- ε chain of tyrosine3-monooxygenase/tryptofan5-monooxygenase activation protein;
- cell deadh-inducing DNA fragmentation factor, alpha subunit;
- programmed cell death 1;
- programmed cell death 2;
- caspase 2;
- baculovirus IAP repeat containing protein;
- apurinic/apyrimidining nuclease;
- interleukin Il4 receptor alpha;
- TYRO3 protein kinase;
- neutral sphyngomyelinase activation associated factor.

Probes present on the Panorama Array cover eight ontologic categories as defined

by the Gene Ontology Consortium http://www.geneontology.org [Khatri *et al.* 2002] – Table 4. As it was expected, the biggest category (66 genes) is apoptosis-related factors. The 29 genes (44%) of this group were found to be expressed in the mammary gland at pregnancy and (or) lactation. More than half of them (16 from 29) undergo qualitative or quantitative expression changes during transition from pregnancy to lactation. The second big ontologic category is cell cycle regulators (52 genes). In the mammary gland expressed were 32% of genes of these group. Transition to lactation was associated with induction of 7 genes from the cytokines and receptors group, and 6 genes from signal transduction group. Probes on the Panorama Array representing genes belonging to remaining four ontogenic classes: mitochondrial associated, caspases and regulators, telomerase-related and tumor necrosis factors (41 genes) were rarely expressed in the mammary gland during pregnancy and (or) lactation (9 genes).

Several genes expressed in the mammary gland can be organized in a putative network (Fig. 1) During transition from pregnancy to lactation we showed induction **Teb b 4.** Out gamic classification of game expressed in the more mammary gland

	Numbarof genes in angy	For cont of games expressed in the manmary gland	Number of genes			
Շձեւթյայ			mpmssad	induced	changing expection	no† changing expression
Apoptosis-mlated factors	"	++	9	5	2	11
Cell outle moulaton	28	32	1	3	3	3
Cyto lines and mapton	52	32	ī	7	2	7
Signal trans ducans	43	35	2	6	2	5
Mitochondrial-secociated proteine	14	35	1	0	0	1
Carpurer and their morelabor	21	10	2	0	0	0
Islomerars-mlated proteins	3	75	1	0	1	0
INF: uperfamily	3	100	0	0	1	2

of TGF- β gene expression (Tab. 2). TGF- β rapidly inhibits c-*myc* expression in a wide variety of cell types [Yue and Mulder 2001], and in the mammary gland too (Tab. 1). TGF- β also downregulates expression of cyclin A and E2F genes in the mammary gland cell line NMuMG [Xie *et al.* 2003], and phosphatase and tensin homolog (PTEN) [Li and Sun 1997, Clarkson *et al.* 2004]. PTEN is a major tumor suppressor that acts by hydrolyzing membrane phosphatidylinositol (PtdIns)-3-phosphates. IGF2 and thioredoxin also regulate expression of PTEN. IGF2 injection into mouse mammary gland significantly increased PTEN expression [Moorehead *et al.* 2003]. Expression of PTEN is downregulated by thioredoxin. Thioredoxin binds in a redox-dependent manner to PTEN to inhibit its PtdIns-3-phosphatase activity [Meuillet *et al.* 2004]

Downregulation of *c-myc* expression can be a cause of induction of caveolin 2 gene during lactation (Tab. 2). It was previously reported that c-myc down-regulate

Fig 1. Hypothetical gene network of genes expressed in the mouse mammary gland.

expression of caveolin 1 and activates STAT5 [Blakely *et al.* 2005], E2F1 and cyclin A2 gene expression [Liao *et al.* 2000]. Caveolins are principal structural proteins of caveolae, sphingolipid and cholesterol-rich invaginations of the plasma membrane involved in vesicular trafficking and signal transduction. During caveolae-dependent signalling, caveolin acts as a scaffold protein to sequester and organize multi-molecular signalling complexes involved in diverse cellular activities. Park *et al.* [2001] showed that caveolin-1 expression is significantly downregulated during late pregnancy and lactation. In the presence of lactogenic hormones, recombinant expression of caveolin-1 in HC11 cells dramatically suppresses the induction of the promoter activity and the synthesis of β -casein. Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorilation of STAT5a at its Jak-2 phosphorylation site (pY694). In addition, the Ras-p42/44 MAPK cascade is hyper-activated [Park *et al.* 2002].

Macroarray analysis of mice mammary gland during transition from pregnancy to lactation allowed finding expression of several new genes and making of genetic network. Future research should more precisely estimate expression profile of genes which expression was found in the mammary gland. Growing number of gene expression profiling should make possible expand the gene regulatory network in the mammary gland.

REFERENCES

- BLAKELY C.M., SINTASATH L., D'CRUZ C.M., HAHN K.T., DUGAN K.D., BELKA G.K., CHO-DOSH L. 2005 – Developmental stage determines the effects of MYC in the mammary epithelium. *Development* 132 (5), 1147-1160.
- BOUTINAUD M., SHAND J.H., PARK M.A., PHILLIPS K, BEATTIE J., FLINT D.J., ALLAN G.J. 2004 – A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development. *Journal of Molecular Endocrinology* 33 (1), 195-207.
- EWAN K.B., SHYAMALA G., RAVANI S.A., TANG Y., AKHURST R., WAKEFIELD L., BARCEL-LOS-HOFF M.H. 2002 – Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. *American Journal of Pathology* 160 (6), 2081-2093.
- CLARKSON R.W.E., WAYLAND M.T., LEE J., FREEMAN T., WATSON CH.J. 2004 Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. *Breast Cancer Research* 6 (2), 92-109.
- CUNHA G.R., HOM Y.K. 1996 Role of mesenchymal-epithelial interactions in mammary gland development. *Journal of Mammary Gland Biology and Neoplasia* 1, 21-35.
- KHATRI P., DRAGHICI S., OSTERMEIER G.C., KRAWETZ S.A. 2002 Profiling gene expression using onto-express. *Genomics* 79, 266-270.
- LI D.M., SUN H. 1997 TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. *Cancer Research* 57 (11), 2124-2129.
- LIAO D.J., NATARAJAN G., DEMING S.L., JAMERSON M.H., JOHNSON M., CHEPKO G., DICKSON R.B. VINCENT T. 2000 – Cell cycle basis for the onset and progression of c-Myc-induced, TGFalpha-enhanced mouse mammary gland carcinogenesis. *Oncogene* 19(10), 1307-1317.
- LEMKIN P.F., THORNWALL G.C., WALTON K.D., HENNIGHAUSEN L. 2000 The microarray explorer tool for data mining of cDNA microarrays: application for the mammary gland. *Nucleic Acids Research* 28, 4452–4459.
- MARTIA., LAZAR H., RITTER P., JAGGI R. 1999 Transcription factor activities and gene expression during mouse mammary gland involution. *Journal of Mammary Gland Biology and Neoplasia* 4 (2), 145-152.
- MASTER S.R., HARTMAN J.L., D'CRUZ C.M., MOODY S.E., KEIPER E.A., HA S.I., COX J.D., BELKA G.K., CHODOSH L.A. 2002 – Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. *Molecular Endocrinology* 16, 1185–1203.
- MEDINA D. 1996 The mammary gland: a unique organ for the study of development and tumorigenesis. *Journal of Mammary Gland Biology and Neoplasia* 1, 5-19.
- MOOREHEAD R.A., HOJILLA C.V., DE BELLE I., WOOD G.A., FATA J.E., ADAMSON E.D., WATSON K.L., EDWARDS D.R., KHOKHA R. 2003 – Insulin-like growth factor-II regulates PTEN expression in the mammary gland. *Journal of Biological Chemistry* 278 (50), 50422-50427.
- MEUILLET E.J., MAHADEVAN D., BERGGREN M., COON A., POWIS G. 2004 Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. *Archives of Biochemistry* and Biophysics 429 (2), 123-133.
- PARK D.S, LEE H., RIEDEL C., HULIT J., SCHERER P.E., PESTELL R.G., LISANTI M.P. 2001

 Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. *Journal of Biological Chemistry* 276 (51), 48389-48397.

- PARK D.S., LEE H., FRANK P.G., RAZANI B., NGUYEN A.V., PARLOW A.F., RUSSELL R.G., HULIT J., PESTELL R.G., LISANTI M.P. 2002 – Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signalling cascade. *Molecular Biology of the Cell* 13 (10), 3416-3430.
- PHANG T.L., NEVILLE M.C., RUDOLPH M., HUNTER L. 2003 Trajectory clustering: a non-parametric method for grouping gene expression time courses, with applications to mammary development. *Pacific Symposia of Biocomputing* 5, 351-362.
- RIJNKELS M. 2002 Multispecies comparison of the casein gene loci and evolution of casein gene family. *Journal of Mammary Gland Biology and Neoplasia* 7 (3), 327-345.
- ROSEN J.M., WYSZOMIERSKI S.L., HADSELL D. 1999 Regulation of milk protein gene expression. *Annual Review of Nutrition* 19, 407-436.
- VISVADER J.E., LINDEMAN G.J. 2003 Transcriptional regulators in mammary gland development and cancer. *The International Journal of Biochemistry and Cell Biology* 35, 1034-1051.
- XIE L., LAW B.K., AAKRE M.E., EDGERTON M., SHYR Y., BHOWMICK N.A., MOSES H.L. 2003

 Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. *Breast Cancer Research* 5 (6), 187-198.
- YUE J., MULDER K.M. 2001 Transforming growth factor-beta signal transduction in epithelial cells. *Pharmacology and Therapeutics* 91,1-34.

Tadeusz Malewski, Stanisław Kaminski, Lech Zwierzchowski

Profilowanie ekspresji genów w gruczole mlekowym myszy podczas przejścia od ciąży do laktacji

Streszczenie

Porównano ekspresję 243 genów w gruczole mlekowym myszy stosując makromacierz Mouse Panorama Apoptosis. Stwierdzono, że podczas przejścia od ciąży do laktacji następuje indukcja 24 genów, represja 16 i ponad dwukrotna zmiana ekspresji 12 genów. Analiza pozwoliła znaleźć 16 nowych genów, których ekspresja zachodzi w gruczole mlekowym myszy. Równoczesna analiza ekspresji 243 genów umożliwiła rozpoczęcie budowania sieci regulacji genów w gruczole mlekowym.