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Enterococcus faecalis is a component of the gut microbiota of healthy chickens. It is also an 
opportunistic pathogen that has a serious economic impact on poultry production. The growing 
presence of multidrug-resistant (MDR) enterococci in poultry environments and products 
represents a major public health concern, therefore finding new methods to combat MDR bacteria 
has become urgent. The study aimed to determine the effect of silver nanoparticles (AgNPs) on E. 
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faecalis viability. Three E. faecalis strains were treated with AgNPs at different concentrations. One 
experimental group was treated with 1% Virkon™ S disinfectant instead of AgNPs. The results 
revealed no significant decrease in the viability of E. faecalis due to AgNPs in contrast to the control. 
The largest reduction was 10-11 p.p. Virkon™ S only slightly reduced the viability of bacterial 
cells: to 67% (33 p.p.) in E. faecalis ATCC 51299 and 61% (39 p.p.) in E. faecalis 1D (isolate from 
one-day-old chicks), compared to the control (cell viability, 100%). The results showed that AgNPs 
exhibited little activity against E. faecalis. Surprisingly, in some cases, viability increased with 
increasing AgNP concentrations. Further analyses are needed (e.g., metabolic, proteomic) to explain 
the mechanisms that allow E. faecalis to resist AgNPs.

KEYWORDS: silver nanoparticles / AgNPs / Enterococcus faecalis / bacterial viability / 
                                  chicken / disinfection

Enterococcus faecalis (E. faecalis) is a gram positive, facultatively anaerobic 
bacterium. It is commonly found in the environment and constitutes a natural element 
of the microbiota of the digestive tract, reproductive tract, and the skin of mammals 
and birds. Like other species within the genus Enterococcus, this pathogen is capable 
of causing infections under favorable conditions [Franz et al. 1999].

E. faecalis is among the most frequently isolated enterococci in poultry [Dolka 
et al. 2017,  Stȩpień-Pyśniak et al. 2016] and poultry meat [Chingwaru et al. 2003]. 
E. faecalis predominated in the intestines of one-day-old chicks, and was also found 
in crop [Devriese et al. 1994] embryonated eggs, dead-in-shell embryos, and in 
samples related to the poultry environment [Dolka et al. 2017]. E. faecalis made up 
the greatest proportion of isolates found in broilers in intensive poultry production, in 
retail meat, and in abattoir samples [Molechan et al. 2019]. It was routinely found in 
human sewage and broiler feces, but rarely in broiler litter [Kuntz et al. 2004]. Olsen 
et al. [2012a] and Rikke et al. [2012] suggested that both vertical and horizontal 
transmission of E. faecalis may occur in chickens. Fertner et al. [2011] demonstrated 
that a few contaminated eggs or embryos had significant potential to rapidly spread E. 
faecalis infection to almost all chickens during hatching.

Over recent years, enterococci have been increasingly problematic in poultry 
pathology. E. faecalis has been shown to be involved in chicken embryo mortality 
[Dolka et al. 2017, Karunarathna et al. 2017], yolk sac infection [Stȩpień-Pyśniak 
et al. 2016], pulmonary hypertension syndrome [Tankson et al. 2001], first-week 
mortality syndrome [Olsen et al. 2012], amyloid arthropathy [Landman et al. 
1999]. Furthermore, E. faecalis is associated with valvular endocarditis, septicemia, 
salpingitis, peritonitis, arthritis, and combinations of some of these conditions, in 
broilers [Gregersen et al. 2010]. E. faecalis is not only pathogenic for animals but 
may also have zoonotic potential, [Olsen et al. 2012] and may even be given the 
name superbug [Hasan et al. 2018]. Infections caused by this bacterium are a serious 
health risk for people, especially as a cause of nosocomial infections [Dai et al. 2018, 
Szczypta et al. 2016].

Enterococcal infections constitute a significant clinical and therapeutic problem 
in human and veterinary medicine. E. faecalis exhibits an intrinsic resistance to 
many commonly used antibiotics [Torres et al. 2018]. Furthermore, enterococci have 
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acquired resistance to glycopeptide antibiotics, including avoparcin, which was used 
extensively until 2006 as a growth-promoter in food-producing animals. Enterococcal 
infections in poultry are usually treated with antibiotics, but many are ineffective 
because of multidrug resistance among bacterial strains, and even to antibiotics not 
approved for use in animals. There is abundant proof that multi-drug resistant (MDR) 
E. faecalis, including VRE (vancomycin-resistant enterococcus), HLAR (high-
level aminoglycoside resistance), and LRE (linezolid resistant enterococci) isolates 
[Wang et al. 2015, Tamang et al. 2017, Kim et al. 2019], exist in poultry and can be 
transmitted to humans. Furthermore, enterococci may contaminate poultry meat and 
poultry meat products, and due to their resistance to high temperatures, may remain 
alive even after fermentation, pasteurization, or cooking [Giraffa, 2002, Martínez et 
al. 2003, Sustackova et al. 2004]. 

The emergence of MDR enterococcal infections and the failures of antibiotic 
therapy have raised concerns in human and veterinary medicine worldwide [Dewulf 
2018]. There is an obvious need to reduce the use of antibiotics in poultry husbandry 
and to reduce the prevalence of bacteria in poultry production facilities and poultry 
food. There has been a growing scientific interest in employing silver nanoparticles 
(AgNPs) as alternatives to antibiotics in the poultry industry [Abd El-Ghany et al. 
2021, Al-Sultan et al. 2022].

Numerous studies have proved the antimicrobial activities of silver nanoparticles 
(AgNPs) against bacteria, fungi, and viruses [Radzig et al. 2013, Bayat, et al. 2021, 
López-Martín et al. 2022]. Interestingly, since antiquity, silver (Ag) has been used for 
various medical conditions, water purification, and food preservation. It was a major 
therapeutic agent in the prevention of infections until the introduction of antibiotics 
[Alexander, 2009, Rudakiya and Pawar 2017]. Recent advances in nanotechnology 
have been extensively incorporated into biomedical sciences [Jian et al. 2020]. 

Nanotechnology is an interdisciplinary science involving chemistry, physics, 
biology, engineering, and toxicology, that has developed rapidly thanks to the 
ability to manufacture new materials at a nanoscale level. AgNPs are nanoscale 
metal structures, with the diameter of the nanoparticles being within the range of 
1–100 nm. The properties of the manufactured materials depend largely on the size 
of the particles from which the material is made [Albrecht et al. 2006]. They can 
have different shaped particles, such as triangles, rods, or spheres. These parameters 
determine the ability of the material to induce bactericidal effects. 

The precise AgNP mechanism is currently unresolved. It seems to involve a number 
of pathways and lead to bacterial cell death due to interaction with bacterial membrane 
proteins, intracellular proteins, phosphate residues in DNA, and interference with cell 
division. AgNPs may adhere to and penetrate the bacterial cell wall leading to changes 
in the bacterial cell wall’s permeability [Rai et al. 2012]. Other studies have reported 
that AgNPs cause oxidative damage to bacteria through an increase in reactive oxygen 
species (ROS) production [Markowska et al. 2013, Bankier et al. 2018, Schwass et al. 
2018, Liao et al. 2019].

Effects of silver nanoparticles on Enterococcus faecalis cells’ viability
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AgNPs exhibit a broad spectrum of activity against gram positive and gram negative 
bacteria, including Enterococcus sp. (E. faecalis), Streptococcus sp. (S. mutans), 
Staphylococcus aureus, coagulase-negative Staphylococcus (S. epidermidis), Bacillus 
subtilis, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter cloacae [Sondi 
and Salopek-Sondi 2004, Gong et al. 2007, Roe et al. 2008, Kalishwaralal et al. 
2010, Namasivayam et al. 2011, Guzman et al. 2012, Schwass et al. 2018, Kalińska 
et al. 2019, Yin et al. 2020]. Furthermore, AgNPs may be an option for treating 
infections caused by MDR bacteria, such as vancomycin-resistant Enterococcus spp., 
methicillin-resistant E. faecium, methicillin-resistant S. aureus (MRSA) - Schwass et 
al. [2018]. The graphene oxide-silver nanocomposite (GO-Ag) is a promising biocidal 
agent against bacteria commonly found in hospital environments, such as E. faecalis 
[de Moraes et al. 2015]. AgNPs exhibit antibiofilm activity against different bacterial 
pathogens, including Enterococcus sp. and E. faecalis [Roe et al. 2008, Schwass et al. 
2018]. AgNP gel has been effective against E. faecalis and can be used to eliminate 
residual enterococcal biofilms during root canal disinfection [Arora et al. 2021]; 
however, the efficacy of AgNPs against E. faecalis biofilms may depend on the mode 
of application [Wu et al. 2014]. 

AgNPs have various applications in poultry production [El Sabry et al. 2018, King 
et al. 2018], for example, as antimicrobial agents for treating infections [Abd El-Ghany 
et al. 2021] and as growth promoting and immune-stimulating additives to improve 
health and bird performance [Sawosz et al. 2007, Fouda et al. 2021]. The silver-
doped silica nanoparticles could be considered a reasonably safe dietary supplement 
for chicken broilers due to their anti-inflammatory, antimicrobial, and immune-
stimulatory properties [Dosoky et al. 2021]. Chicks fed with AgNPs demonstrated 
increased body weight gain and muscle weight, improved feeding efficiency, and 
increased ash digestibility [Saleh i El-Magd 2018]. Most recent developments offer 
attractive potential benefits from nanoparticle-based poultry vaccines, ‘smart drug’ 
delivery systems and rapid pathogen detection methods [El Sabry et al. 2018]. There 
are also emerging concerns arising from dietary application of AgNPs in poultry 
[Loghman 2012]. Interestingly, AgNPs orally administrated to chicken hen may be 
translocated to their liver and subsequently transferred to egg yolk. This means that 
the oral administration of AgNPs through the hens’ animal feed could be a source of 
consumer exposure to AgNPs, but it may also depends on the type of AgNPs (chemical 
form, shape, dimension) [Gallocchio et al. 2017].  Nanotechnology can be used to 
enhance the microbiological food safety and quality of poultry products prior to being 
supplied to consumers. Control strategies in the poultry industry consist of combined 
pre-harvest and post-harvest applications that aim to decrease foodborne pathogens 
on-farm and also minimize their introduction at poultry processing plants[King et 
al. 2018]. Morsy et al. [2014] demonstrated the activity of AgNPs incorporated into 
pullulan films (an edible polysaccharide polymer) to control S. aureus and Listeria 
monocytogenes on meat and poultry products. Other authors have highlighted the 
potential applications of AgNPs in disinfecting eggs and hatchers to reduce bacterial 
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contamination [Banach et al. 2016] in farms and abattoirs [Elsayed et al. 2020], in 
food packaging [Carbone et al. 2016, Kwon and Ko, 2022], in filters for tap water 
and air purification devices, and also in surface and water nano-enabled disinfection 
in animal husbandry, and textiles (protective clothing) [Thamilselvi and Radha 2017].

This study aimed to determine the influence of AgNPs on the viability of E. faecalis 
strains. In addition, one of the most commonly used disinfectants in hatcheries was 
tested instead of AgNPs. We also compared the Presto Blue test and XTT reagent, 
which were used to evaluate the viability of E. faecalis.

Material and methods

Bacterial cells preparation (Experiment 3)

Two reference strains of E. faecalis, ATCC 29212 and ATCC 51299, and one E. 
faecalis strain (1D) isolated from the yolk sacs of one day-old chicks were used. The 
bacterial strains were stored in a BHI (brain heart infusion) broth with 20% glycerol 
at -20℃, then thawed and rinsed with sterile distilled water to remove the glycerol. 
Each bacterial strain was added to 50 ml of nutrient broth medium (Bio-Rad, Warsaw, 
Poland) in sterile glass flasks. The flasks were placed in a rotating incubator (Stuart 
Shaking Incubator SI500; Cole-Parmer Ltd, Stone, Staffordshire, United Kingdom] 
for 24 h. at 37℃.

Preparation of bacterial treatments with AgNPs, and with 1% Virkon™ S instead of AgNPs

Three experiments were carried out following modified methods presented by 
Kalińska et al. [2019].  Physicochemical properties of tested AgNPs were similar to 
their results and did not differ from the data available in references provided by other 
authors.

In the first experiment, a colloidal solution of AgNPs at a concentration of 50 
ppm (i.e. µg/ml, mg/L, mg/kg) was used (batch number 66E/06/2017, Nano-Tech, 
Poland). Flasks containing 50 ml of nutrient broth (Bio-Rad, Poland) were prepared 
for the control (C) and experimental groups (Ag0.5, Ag1, Ag2, Ag5). The three control 
groups contained nutrient broth and 100 µl of bacterial suspension (E. faecalis ATCC 
29212, ATCC 51299, and 1D). Each assay was performed three times for accuracy. In 
the experimental groups, 0.5 ml, 1 ml, 2 ml, and 5 ml of nutrient broth were removed 
from the flasks. In the next step, 0.5 ml, 1 ml, 2 ml, and 5 ml of colloidal solution 
containing AgNPs was added to the flasks in order to obtain the following AgNP 
concentrations: 0.5 ppm, 1 ppm, 2 ppm, and 5 ppm, respectively. The experimental 
groups were labeled as Ag0.5, Ag1, Ag2, and Ag5. Each of the flasks with designated 
concentrations of AgNPs was prepared in triplicate.

A further experimental group (V) contained 1% Virkon™ S (Bayer Animal 
Health, Germany) instead of AgNPs. Three flasks containing 0.5 g Virkon™ S and 
50 mL of nutrient broth were prepared; then 100 µl of each E. faecalis strain (ATCC 
29212, ATCC 51299, 1D) was added. Each assay was determined three times.

Effects of silver nanoparticles on Enterococcus faecalis cells’ viability
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In the second experiment, different colloidal solutions of AgNPs (69E/10/2017, 
Nano-Tech, Poland) were used for E. faecalis ATCC 51299 and 1D. There was also 
the V group, which consisted of E. faecalis ATCC 51299 and 1D, and 1% Virkon™ S 
(instead of AgNPs).

In the third experiment, a bacterial solution of E. faecalis ATCC 29212 was 
treated with AgNPs (66E/06/2017, Nano-Tech, Poland), and separately with Virkon™ 
S (group V). Unlike the other two experiments, this third experiment used a different 
method for reading the results.

Example photographs of AnNPs at a concentration of 5 ppm taken with a 
transmission emission electroscope (TEM) are included in Photograph 1.

K. Żbikowska et al. 

 
Photograph 1. AnNPs at a concentration of 5 ppm presented using TEM (batch 69E/10/2017).

The two different batches of AgNPs used in the study differed in terms of pH and 
conductivity. The specifications for each batch were as follows: batch 66E / 06/2017 
(used in the 1st and 3rd experiment), pH=6.98 and conductivity 24.70 µS; batch 69E / 
10/2017 (used in the 2nd experiment), pH=6.89 and conductivity 23.01 µS. According 
to information from the Nano-Tech representative, these differences result from the 
water used in the production. The size of 70% of the nanoparticles present in the 
solution was in the range of 3 to 10 nm. No stabilizer was used for their production.

Nanoparticles and Virkon™ S activity evaluation

The Presto Blue test (Thermo Fisher Scientific, USA) was used to assess bacterial 
viability after exposure to either nanoparticles or Virkon™ S in the first and second 
experiment. Presto Blue reagent is a ready-to-use resazurin-based solution that can 
enter cells easily. This is a cell viability indicator that uses the reducing power of 
living cells. The reagent is modified by reducing the environment of the viable cells, 
turning from blue to pink in color and becoming highly fluorescent. The color changes 
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can thus be estimated using absorbance measurements. The control group (cells with 
100% viability) and experimental groups had a volume of 90 µL and were located in 
a 96-well plate, to which 10 µL of Presto Blue reagent was added. The cell viability 
reagent was warmed to room temperature before use. The plate was incubated for 20 
min. and then the absorbance was measured at 570 nm using a microtiter plate reader 
(Infinite M200, Tecan, Durham, NC, USA).

In the third experiment, a colorimetric XTT based assay (Roche Diagnostics GmbH, 
Germany) was used for the nonradioactive quantification of cellular proliferation and 
cell viability. This assay is based on the cleaving of yellow tetrazolium salt (XTT), 
which is then formed into an orange formazan dye by metabolically active cells. 
Therefore, this conversion only occurs in viable cells. This formazan dye is soluble 
in aqueous solutions and is directly quantified using a spectrophotometer. The control 
group and experimental groups had a volume of 100 µL and were located in a 96-well 
plate, to which 50 µL of XTT reagent was added. The plate was incubated for 4 h. and 
then the absorbance was measured at 450 nm using a microtiter plate reader (Infinite 
M200, Tecan, Durham, NC, USA).

Nanoparticles and Virkon™ S activity evaluation

The viability of bacterial cells was expressed as a percentage of the control 
group. The viability of the cells in the control group was presented as 100% and 
compared with the viability of the cells in the experimental groups. The obtained 
data were analyzed using one-way analysis of variance (ANOVA) in SPSS IMAGO 
5.1. The differences between the groups were estimated using Duncan’s test. The 
results were presented as average values with standard errors. Differences at p≤0.05 
were considered statistically significant. Due to the number of groups, a Bonferroni 
correction was applied: 0.05:6=0.0083; 0.01:6=0.0016 (Tab. 1 and 2).

The effect of AgNP concentration and Virkon™ S (without AgNPs) on bacterial cell viability, 
as estimated using the Presto Blue Test (Experiments 1 and 2)

In the first experiment, statistically significant differences (p≤0.01) were 
demonstrated for all the tested E. faecalis strains (ATCC 29212, ATCC 51299, 1D) 
compared to the control group (Tab. 1).

Compared to the control group, the best results for decreasing the viability of 
bacteria were demonstrated for all the tested strains exposed to Virkon™ S (group V). 
Compared to the control group, the viability of the bacterial cells of E. faecalis ATCC 
29212, ATCC 51299, and 1D strains treated with Virkon™ S decreased by 20, 33, and 
39 percentage points (p.p.), respectively (Tab. 1).

In the case of the E. faecalis ATCC 29212 strain exposed to various concentrations 
of AgNPs (1 ppm, 2 ppm, 5 ppm), an increase in the viability of bacterial cells was 
observed to a level of 20, 3 18, and 18 p.p., respectively. However, in the case of E. 
faecalis ATCC 51299 and 1D strains, a decrease in the viability of the bacteria was 
noted. The greatest reduction in viability of ATCC 51299 cells was observed in the 
Ag2 group, showing an 11 percentage point  (p.p.) decrease compared to the control. 

Effects of silver nanoparticles on Enterococcus faecalis cells’ viability
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However, in the case of the 1D strain, the greatest reduction in viability was recorded 
in the Ag5 group, where it amounted to 10 p.p. compared to the control group (Fig. 
1, Tab. 1).

In the second experiment, statistically significant differences in the viability 
of the E. faecalis ATCC 51299 (p = 0.02) and E. faecalis 1D (p≤0.05) strains were 
demonstrated (Tab. 1). For both strains in group V, bacterial viability increased by 7 
and 2 p.p., respectively. However, under the influence of various concentrations of 
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AgNPs, both a growth and reduction in bacterial viability were observed. In the case 
of the E. faecalis ATCC 51299 strain, the greatest reduction in viability was 2 p.p. in 
the Ag.0.5 group, while the greatest increase in bacterial viability was 4.5 p.p. in the 
Ag5 group, compared to the control group. In the case of the E. faecalis 1D strain, the 
greatest reduction in viability was 10 p.p., which was the same for the Ag0.5 group, 
while the greatest increase in bacterial viability was 12 p.p., again in the Ag5 group, 
compared to the control group (Tab. 1, Fig. 2).

Effects of silver nanoparticles on Enterococcus faecalis cells’ viability

 
Fig. 2. The results of the evaluation of the viability of Enterococcus faecalis, estimated using the Presto 
Blue test, in the research groups treated with AgNPs (groups Ag0.5, Ag1, Ag2, Ag5) or Virkon™ S (group 
V), and in the control group (C) (Experiment 2).

The effect of AgNP concentration and Virkon™ S (without AgNPs) on bacterial cell viability, 
estimated using Presto Blue and XTT tests (Experiment 3)

In the third experiment, the viability of the E. faecalis ATCC 29212 strain was 
compared using the Presto Blue test and the XTT test (Tab. 2). The Presto Blue test 
results were the same as for the first experiment for this strain. The viability of the 
E. faecalis ATCC 29212 strain estimated using the XTT test in individual groups 
showed no statistically significant difference (p>0.05) (Tab. 2, Fig. 3). Bacterial cell 
viability decreased for Ag0.5 and Ag1 as measured by the XTT test. Both tests showed 
a decrease 5-15 p.p. in the viability of E. faecalis treated with Virkon™ S (group V).

This study investigated the impact of AgNPs (0.5 ppm, 1 ppm, 2 ppm, 5 ppm) and 
1% Virkon™ S on the viability of Enterococcus faecalis strains (Tab. 1 and 2). The 
concentration of AgNPs needed to prevent bacteria growth may be different for each 
species of the same Gram-staining type [Morones et al. 2005]. Measuring changes 
in cell viability is a fundamental method for evaluating cell health, and a reliable 
indicator of cell viability or death.

Importantly, in our study the AgNP solutions did not considerably reduce the 
viability of E. faecalis cells compared to the non-treated control group (Tab. 2). 
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Moreover, in some cases, the viability of E. faecalis increased with increasing AgNP 
concentrations. Surprisingly, the AgNP solution’s environment might even promote 
the viability of bacteria. The most significant reduction in the viability of the E. 
faecalis cells under the influence of AgNPs was 10-11 percentage points compared to 
the control group. This reduction in viability was noted at a concentration of 2 ppm 
and 5 ppm AgNPs for one batch of nanoparticles (66E/ 06/2017). However, the same 
reduction in E. faecalis viability was obtained with a lower concentration of AgNPs 
(0.5 ppm), but when applied to a different batch of nanoparticles (69E/10/2017). The 
obtained test results indicated no biocidal effect in relation to the bacterial strains used.

K. Żbikowska et al. 

Table 2. The comparison of the viability of Enterococcus faecalis 
ATCC 29212 for each of the utilized tests (Presto Blue 
Test or XTT test) 

 

Group 

 Experiment 3  
AgNPs batch 66E/06/2017  

 Presto Blue Test 
E. faecalis ATCC 29212 

 XTT Test 
E. faecalis ATCC 29212   

 LSM (%) SE  LSM (%) SE 
C  100.0A 2.63  100.0 4.93 
V  86.2A 3.87  94.2 2.13 
Ag0.5  127.1B 2.98  94.4 5.12 
Ag1  144.1BC 7.05  96.0 5.95 
Ag2  140.8B 2.62  105.5 6.35 
Ag5  163.8C 7.68  101.3 5.09 
p value  <0.001  0.575 

 
SM – least squares mean; SE – standard error. 
 

 
Fig. 3. The results of the evaluation of the viability of Enterococcus faecalis, estimated using Presto Blue 
and XTT tests, in the research groups treated with AgNPs (groups Ag0.5, Ag1, Ag2, Ag5) or Virkon™ S 
(group V), and in the control group (C) (Experiment 3).
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These results differ from studies that generally confirm the toxicity of AgNPs 
for many bacteria species. In other studies, significant AgNP activity, compared to 
standard antibiotic drugs, has been observed for poultry pathogenic bacteria such as 
E. coli, S. aureus, P. aeruginosa, and Salmonella typhi [Lee et al. 2018]. Schwass et 
al. [2018] reported that AgNPs could be a useful agent against E. faecalis. The MIC 
(minimum inhibitory concentration) and MBC (minimum bactericidal concentration) 
of the AgNPs for E. faecalis were, respectively, 19.2 µg/mL (ppm), and 38.4 µg mL 
(ppm) [Schwass et al. 2018]. In a study by De Moraes et al. [2015], the MIC of GO-Ag 
for E. faecalis ATCC 29212 was 30 ppm. In the presence of GO-Ag nanocomposite, 
E. faecalis ATCC 29212 demonstrated a low MBC value of 60 ppm [de Moraes et 
al. 2015]. An antibacterial effect against E. faecalis (ATCC 29212) was reported by 
Namasivayam et al. [2011], who used much higher concentrations of AgNPs (20, 40, 
60, 80 ppm) than those in our study. Also, another author demonstrated that AgNPs 
at concentrations of 75 ppm reduced the growth of different bacteria (Pseudomonas 
aeruginosa, Vibrio cholera, E. coli, S. typhus) - Morones et al. [2005]. Compared to 
the above data, it seems that the AgNP concentrations used in our study were too low. 
On the other hand, Kalińska et al. [2019] confirmed the activity of AgNPs, CuNPs 
(copper nanoparticles), and AgCuNPs (silver-copper nanoparticles), at the same 
concentrations of AgNPs as those used in our study (0.5, 1, 2, 2.5 ppm). They noted a 
decreased viability for E. faecalis and other pathogens (E.coli, S. aureus, Enterobacter 
cloacae, Streptococcus agalactiae, and Candida albicans). 

In contrast to the results of Kalińska et al. [2019], our results did not confirm 
the efficacy of the same AgNP concentrations in reducing the viability of E. faecalis. 
Other authors also noted no impact from the administration of AgNPs (5, 15, 25 ppm) 
on intestinal microbial composition, including the number of enterococci in chickens 
[Vadalasetty et al. 2018]. Research conducted by Chiao et al. [2012] partially confirmed 
our results. Even though their research was conducted in vivo and on different bacteria 
(Salmonella spp.), they stated that AgNPs alone had no anti-Salmonella activity. 
A dose of 3.75 ppm of AgNPs, or even ten-fold higher, did not effectively reduce 
systemic infection or mortality caused by Salmonella spp. in specific pathogen-
free (SPF) chicks after oral administration [Chiao et al. 2012]. Other authors have 
revealed that the administration of AgNPs to the drinking water of Japanese quails 
significantly increased the number of bacteria (Lactobacillus spp., Leuconostoc lactis, 
Actinomyces naeslundii), but had no effect on the E. faecium population. Furthermore, 
AgNPs did not have any negative effect on enterocytes in the duodenal villi [Sawosz 
et al. 2007]. In a more recent study, Al-Sultan et al. [2022] showed that populations 
of enterococcal bacteria decreased significantly in broiler chickens on day 28 with 
the dietary inclusion of AgNPs, but not (p>0.05) on day 42 using a dose of 20 ppm. 
What is more, they suggested that the dietary inclusion in broilers’ diets of AgNPs 
at more than 2.5 ppm had many negative effects, represented by the accumulation of 
silver residue in the broilers’ meat and the possibility of transmitting nano-silver to 
consumers. Also, AgNPs had a cytotoxic effect on internal organs in a dose-dependent 
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manner in broilers and, so, might be harmful to chicken and human health [Al-Sultan 
et al. 2022].

These contradictory results may be related to variations in the AgNPs’ size, shape, 
dose, stability, exposure time, and preparation method (electrical, electrochemical, or 
chemical) [Rai et al. 2012]. According to the literature, the bactericidal effect of AgNPs 
is size dependent. AgNPs of size 10-100 nm exhibit a bactericidal effect against both 
Gram-positive and Gram-negative bacteria. However, smaller AgNP particle sizes 
(~1-10 nm) enable direct interaction with bacteria (adherence to the cell wall and 
penetration into the bacteria’s cell), which in turn improves the antibacterial activity 
compared to other sizes of AgNPs [Morones et al. 2005, Agnihotri et al. 2014]. In our 
study, the size of 70% of the nanoparticles was 3-10 nm. Therefore, we expected to 
see a bactericidal effect in relation to the bacterial strain used; however, we did not 
obtain such results.	

In addition, some of the properties of the bacteria may have had an influence on 
the results of the experiment. Gram-positive bacteria like E. faecalis have a thick 
(30 nm) peptidoglycan layer in the cell wall that makes them less susceptible to the 
toxicity of AgNPs. The stronger antibacterial effect of AgNPs on Gram-negative 
bacteria can be attributed to the thinner (2-3 nm) peptidoglycan layer in their walls 
[Rai et al. 2012, Cavassin et al. 2015]. AgNPs have exhibited bactericidal activity 
against Gram-negative bacteria with a MIC as low as 5 ppm, compared to 25 ppm for 
Gram-positive [Dilshad et al. 2020]. 

In light of other studies, the bacterial viability in our experiment was not 
inhibited, because the AgNP concentrations used were too low. E. faecalis is a 
Gram-positive bacteria and needs a minimum concentration of 25 ppm. What is 
more, another work showed that AgNPs have potential bactericidal effects against E. 
faecalis at concentrations of 5,000 ppm [Krishnan et al. 2015]. It is probable that the 
concentrations used in this experiment were too low to produce the same effect.

It is worth noting that Gram-positive bacteria have high amounts of amine and 
carboxyl groups in their cell membranes. Some reports have indicated that this is the 
reason why they are more susceptible to CuNPs [Beveridge and Murray 1980, Kruk 
et al. 2015]. CuNPs could be an interesting possibility for treating bacterial diseases 
in poultry caused by E. faecalis. But it is desirable to first conduct in vitro studies with 
the pathogenic bacteria E. faecalis.

Cavassin et al. [2015] observed, in vitro, that the inhibitory effect of AgNPs was 
stronger against Gram-negative than Gram-positive bacteria, and the best result was 
obtained using AgNPs stabilized with citrate and chitosan. Stabilization with natural 
polymers, such as chitosan, which has been used in the green synthesis of AgNPs, may 
be a good solution. The authors suggested that the chitosan-stabilized AgNPs may 
enhance bactericidal properties and biocompatibility against E. faecalis. In another 
study, the combined effect of AgNPs conjugated with gentamicin and chloramphenicol 
was noticeable against E. faecalis, and was higher compared to antibiotics or AgNPs 
alone [Katva et al. 2017]. Based on the above data, we suggest that AgNPs alone - as 
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in our experiment - without stabilization or other additive, for example, an antibiotic, 
may be insufficient to produce a bactericidal effect against E. faecalis.

In our study, the effect of AgNPs on the viability of E. faecalis was compared to 1% 
Virkon™ S. The first experiment showed that the Virkon™ S decreased the viability 
of each of the three examined strains of E. faecalis. On the other hand, in the second 
experiment Virkon™ S did not decrease the viability of E. faecalis ATCC 51299 or 
1D, and even slightly (7 and 2 p.p. respectively) increased viability in contrast to the 
control group (Tab. 1). It is hard to explain what caused this difference. It is probable 
that the Virkon™ S solution was relatively unstable, so the storage or preparation 
conditions might have had an influence. However, in the literature we find information 
stating that 1% Virkon™ S is effective against vegetative bacteria like Pseudomonas 
aeruginosa, E. coli, S. aureus, Enterococcus hirae, and Mycobacterium smegmatis 
[Hernndez et al. 2000]. Sylte et al. [2017] also confirmed the antibacterial activity of 
Virkon™ S, in which Virkon™ S fully eliminated aerobic and anaerobic bacteria from 
pieces of eggshells. No bacterial culture was observed after 10 min. of treatment, but a 
shorter incubation period of 5 min. failed to effectively eliminate bacteria from turkey 
eggshells. However, Virkon™ S, as well as Oxysept-333, and CLS, had significant 
toxic effects on embryos (p<0.05) after 10- and 15-min. treatments.

In our study, we compared two commercially available viability reagents. 
Differences in the XTT test at p≤0.57 were considered statistically insignificant. In the 
XTT test, a decrease in the bacteria’s viability was observed in the case of the Ag0.5 
and Ag1 groups; and in the Presto Blue test, the obtained values for all groups with 
AgNPs added was above 100%. The differences between these tests could relate to the 
fact that Presto Blue is a resazurin based reagent, while XTT is tetrazolium based. In 
Lall et al. [2013], the paper’s authors compared Presto Blue and XTT in a test using 
various bacteria strains (Streptococcus mutans, Prevotella intermedia, Cutibacterium 
acnes (previously named Propionibacterium acnes), and Mycobacterium tuberculosis) 
for drug effectiveness control. The results clearly indicated that the obtained values 
for bacteria viability can differ according to the growth-indicator reagents used, such 
as Presto Blue or XTT.

Conclusions

We found that the AgNP solutions did not considerably reduce the viability of E. 
faecalis cells compared to the non-treated bacterial cells. The highest reduction in the 
viability of E. faecalis cells under the influence of AgNPs was 10 and 11 percentage 
points compared to the control group. This decrease in viability was noted at different 
concentrations of AgNPs (0.5 ppm, 2 ppm, and 5 ppm) depending on the batch of 
commercial nanoparticles used. Furthermore, AgNPs increased Enterococcus faecalis 
viability in some cases. 

In comparison, Virkon™ S alone decreased the viability of E. faecalis cells by 
20, 33, and 39 (E. faecalis ATCC 29212, ATCC 51299, 1D, respectively). Our results 
did not confirm previous studies in which AgNPs showed strong antibacterial effects; 
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however, these were usually at higher concentrations than those used in our study. 
We suggest that AgNP-based disinfectants at the tested concentrations would not be 
effective at reducing Enterococcus faecalis in poultry environments, or preventing 
infections caused by this enterococcal species. More experimental studies are needed to 
assess the bactericidal potential of using AgNPs against enterococci. There is a need to 
find a new approach to AgNPs synthesis that may be more effective against this group 
of bacteria.
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